Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven F. Abcouwer is active.

Publication


Featured researches published by Steven F. Abcouwer.


Investigative Ophthalmology & Visual Science | 2011

The Significance of Vascular and Neural Apoptosis to the Pathology of Diabetic Retinopathy

Alistair J. Barber; Thomas W. Gardner; Steven F. Abcouwer

The most striking features of diabetic retinopathy are the vascular abnormalities that are apparent by fundus examination. There is also strong evidence that diabetes causes apoptosis of neural and vascular cells in the retina. Thus, there is good reason to define diabetic retinopathy as a form of chronic neurovascular degeneration. In keeping with the gradual onset of retinopathy in humans, the rate of cell loss in the animal models is insidious, even in uncontrolled diabetes. This is not surprising given that a sustained high rate of cell loss without regeneration would soon lead to catastrophic tissue destruction. The consequences of ongoing cell death are difficult to detect, and even the quantification of cumulative cell loss requires painstaking histology and microscopy. This subtle cell loss raises the issue of the relevance of the phenomenon to the progression of diabetic retinopathy and the ultimate loss of vision. Neuronal function may be compromised in advance of apoptosis, contributing to an early deterioration of vision. Here we review some of the evidence supporting apoptotic cell death as a contributing mechanism of diabetic retinopathy, explore some of the potential causes, and discuss the potential links between apoptosis and loss of visual function in diabetic retinopathy.


Annals of the New York Academy of Sciences | 2014

Diabetic retinopathy: loss of neuroretinal adaptation to the diabetic metabolic environment

Steven F. Abcouwer; Thomas W. Gardner

Diabetic retinopathy (DR) impairs vision of patients with type 1 and type 2 diabetes, associated with vascular dysfunction and occlusion, retinal edema, hemorrhage, and inappropriate growth of new blood vessels. The recent success of biologic treatments targeting vascular endothelial growth factor (VEGF) demonstrates that treating the vascular aspects in the later stages of the disease can preserve vision in many patients. It would also be highly desirable to prevent the onset of the disease or arrest its progression at a stage preceding the appearance of overt microvascular pathologies. The progression of DR is not necessarily linear but may follow a series of steps that evolve over the course of multiple years. Abundant data suggest that diabetes affects the entire neurovascular unit of the retina, with an early loss of neurovascular coupling, gradual neurodegeneration, gliosis, and neuroinflammation occurring before observable vascular pathologies. In this article, we consider the pathology of DR from the point of view that diabetes causes measurable dysfunctions in the complex integral network of cell types that produce and maintain human vision.


Archives of Ophthalmology | 2011

An Integrated Approach to Diabetic Retinopathy Research

Thomas W. Gardner; Steven F. Abcouwer; Alistair J. Barber; Gregory R. Jackson

This review discusses the pathophysiology of diabetic retinopathy related to direct effects of loss of insulin receptor action and metabolic dysregulation on the retina. The resulting sensory neuropathy can be diagnosed by structural and functional tests in patients with mild nonproliferative diabetic retinopathy. Research teams can collaborate to integrate ocular and systemic factors that impair vision and to design strategies to maintain retinal function in persons with diabetes mellitus. Evolving concepts may lead to inclusion of tests of retinal function in the detection of diabetic retinopathy and neuroprotective strategies to preserve vision for persons with diabetes.


Investigative Ophthalmology & Visual Science | 2010

Effects of ischemic preconditioning and bevacizumab on apoptosis and vascular permeability following retinal ischemia-reperfusion injury

Steven F. Abcouwer; Cheng Mao Lin; Ellen B. Wolpert; Sumathi Shanmugam; Eric W. Schaefer; Willard M. Freeman; Alistair J. Barber; David A. Antonetti

PURPOSE Using transient ischemia followed by reperfusion (IR) to model ischemic retinal disease, this study compares the effects of ischemic preconditioning (IPC) and therapies targeting vascular endothelial growth factor (VEGF) and tumor necrosis factor (TNF)-α on retinal apoptosis, vascular permeability, and mRNA expression. METHODS Rats were subjected to 30 or 45 minutes of retinal ischemia followed by reperfusion for up to 48 hours. Neurodegeneration was quantified by caspase-3 (DEVDase) activity and by measuring nucleosomal DNA content (cell death ELISA). Vascular leakage was quantified by the Evans Blue dye method. A set of IR-responsive mRNAs was identified by whole-genome microarray and confirmed by RT-PCR analyses. VEGF protein was measured by Western blot analysis. IPC was accomplished with 10 minutes of ischemia 24 hours before IR. VEGF and TNFα signaling was inhibited by intravitreal injection of bevacizumab or etanercept, respectively. RESULTS IR caused significant retinal cell apoptosis and vascular permeability after 4 and 48 hours. Whereas IR decreased VegfA mRNA, VEGF protein was significantly increased. IPC effectively inhibited neurodegeneration, bevacizumab effectively inhibited vascular permeability, and etanercept failed to affect either outcome. IPC significantly altered the IR responses of 15 of 33 IR-responsive mRNAs, whereas bevacizumab had no significant effect on these mRNAs. CONCLUSIONS IR provides an acute model of ischemic retinopathy that includes neurodegeneration and VEGF-dependent vascular permeability and is amenable to rapid drug therapy testing. The distinct effects of IPC and bevacizumab demonstrate that the apoptotic and vascular responses to IR may be separated and that therapeutics targeting each pathologic endpoint may be warranted in treating ischemic retinal diseases.


Journal of Cerebral Blood Flow and Metabolism | 2014

Ischemia–Reperfusion Injury Induces Occludin Phosphorylation/Ubiquitination and Retinal Vascular Permeability in a VEGFR-2-Dependent Manner

Arivalagan Muthusamy; Cheng Mao Lin; Sumathi Shanmugam; Heather Lindner; Steven F. Abcouwer; David A. Antonetti

Retinal ischemia–reperfusion (IR) induces neurodegenaration as well as blood–retinal barrier (BRB) breakdown causing vascular permeability. Whereas the neuronal death has been extensively studied, the molecular mechanisms related to BRB breakdown in IR injury remain poorly understood. In this study, we investigated the early changes in tight junctional (TJ) proteins in response to IR injury. Ischemia–reperfusion injury was induced in male rat retinas by increasing the intraocular pressure for 45 minutes followed by natural reperfusion. The results demonstrate that IR injury induced occludin Ser490 phosphorylation and ubiquitination within 15 minutes of reperfusion with subsequent vascular permeability. Immunohistochemical analysis revealed a rapid increase in occludin Ser490 phosphorylation and loss of Zonula occludens-1 (ZO-1) protein, particularly in arterioles. Ischemia–reperfusion injury also rapidly induced the activation and phosphorylation of vascular endothelial growth factor receptor-2 (VEGFR-2) at tyrosine 1175. Blocking vascular endothelial growth factor (VEGF) function by intravitreal injection of bevacizumab prevented VEGFR-2 activation, occludin phosphorylation, and vascular permeability. These studies suggest a novel mechanism of occludin Ser490 phosphorylation and ubiquitination downstream of VEGFR2 activation associated with early IR-induced vascular permeability.


PLOS ONE | 2011

Differential Roles of Hyperglycemia and Hypoinsulinemia in Diabetes Induced Retinal Cell Death: Evidence for Retinal Insulin Resistance

Patrice E. Fort; Mandy Losiewicz; Chad E. N. Reiter; Ravi S. J. Singh; Makoto Nakamura; Steven F. Abcouwer; Alistair J. Barber; Thomas W. Gardner

Diabetes pathology derives from the combination of hyperglycemia and hypoinsulinemia or insulin resistance leading to diabetic complications including diabetic neuropathy, nephropathy and retinopathy. Diabetic retinopathy is characterized by numerous retinal defects affecting the vasculature and the neuro-retina, but the relative contributions of the loss of retinal insulin signaling and hyperglycemia have never been directly compared. In this study we tested the hypothesis that increased retinal insulin signaling and glycemic normalization would exert differential effects on retinal cell survival and retinal physiology during diabetes. We have demonstrated in this study that both subconjunctival insulin administration and systemic glycemic reduction using the sodium-glucose linked transporter inhibitor phloridzin affected the regulation of retinal cell survival in diabetic rats. Both treatments partially restored the retinal insulin signaling without increasing plasma insulin levels. Retinal transcriptomic and histological analysis also clearly demonstrated that local administration of insulin and systemic glycemia normalization use different pathways to counteract the effects of diabetes on the retina. While local insulin primarily affected inflammation-associated pathways, systemic glycemic control affected pathways involved in the regulation of cell signaling and metabolism. These results suggest that hyperglycemia induces resistance to growth factor action in the retina and clearly demonstrate that both restoration of glycemic control and retinal insulin signaling can act through different pathways to both normalize diabetes-induced retinal abnormality and prevent vision loss.


JCI insight | 2016

Tissue-specific metabolic reprogramming drives nutrient flux in diabetic complications

Kelli M. Sas; Pradeep Kayampilly; Jaeman Byun; Viji Nair; Lucy M. Hinder; Junguk Hur; Hongyu Zhang; Cheng-Mao Lin; Nathan R. Qi; George Michailidis; Per-Henrik Groop; Robert G. Nelson; Manjula Darshi; Kumar Sharma; Jeffrey R. Schelling; John R. Sedor; Rodica Pop-Busui; Joel M. Weinberg; Scott A. Soleimanpour; Steven F. Abcouwer; Thomas W. Gardner; Charles F. Burant; Eva L. Feldman; Matthias Kretzler; Frank C. Brosius; Subramaniam Pennathur

Diabetes is associated with altered cellular metabolism, but how altered metabolism contributes to the development of diabetic complications is unknown. We used the BKS db/db diabetic mouse model to investigate changes in carbohydrate and lipid metabolism in kidney cortex, peripheral nerve, and retina. A systems approach using transcriptomics, metabolomics, and metabolic flux analysis identified tissue-specific differences, with increased glucose and fatty acid metabolism in the kidney, a moderate increase in the retina, and a decrease in the nerve. In the kidney, increased metabolism was associated with enhanced protein acetylation and mitochondrial dysfunction. To confirm these findings in human disease, we analyzed diabetic kidney transcriptomic data and urinary metabolites from a cohort of Southwestern American Indians. The urinary findings were replicated in 2 independent patient cohorts, the Finnish Diabetic Nephropathy and the Family Investigation of Nephropathy and Diabetes studies. Increased concentrations of TCA cycle metabolites in urine, but not in plasma, predicted progression of diabetic kidney disease, and there was an enrichment of pathways involved in glycolysis and fatty acid and amino acid metabolism. Our findings highlight tissue-specific changes in metabolism in complication-prone tissues in diabetes and suggest that urinary TCA cycle intermediates are potential prognostic biomarkers of diabetic kidney disease progression.


Journal of Ocular Biology, Diseases, and Informatics | 2011

Neural inflammation and the microglial response in diabetic retinopathy

Steven F. Abcouwer

This chapter reviews the function of microglia and their potential roles in neural inflammation and pathological changes during diabetic retinopathy.


Investigative Ophthalmology & Visual Science | 2016

Protective Effect of a GLP-1 Analog on Ischemia-Reperfusion Induced Blood–Retinal Barrier Breakdown and Inflammation

Andreia Gonçalves; Cheng Mao Lin; Arivalagan Muthusamy; Carlos Fontes-Ribeiro; António F. Ambrósio; Steven F. Abcouwer; Rosa Fernandes; David A. Antonetti

Purpose Inflammation associated with blood–retinal barrier (BRB) breakdown is a common feature of several retinal diseases. Therefore, the development of novel nonsteroidal anti-inflammatory approaches may provide important therapeutic options. Previous studies demonstrated that inhibition of dipeptidyl peptidase-IV, the enzyme responsible for the degradation of glucagon-like peptide-1 (GLP-1), led to insulin-independent prevention of diabetes-induced increases in BRB permeability, suggesting that incretin-based drugs may have beneficial pleiotropic effects in the retina. In the current study, the barrier protective and anti-inflammatory properties of exendin-4 (Ex-4), an analog of GLP-1, after ischemia-reperfusion (IR) injury were examined. Methods Ischemia-reperfusion injury was induced in rat retinas by increasing the intraocular pressure for 45 minutes followed by 48 hours of reperfusion. Rats were treated with Ex-4 prior to and following IR. Blood–retinal barrier permeability was assessed by Evans blue dye leakage. Retinal inflammatory gene expression and leukocytic infiltration were measured by qRT-PCR and immunofluorescence, respectively. A microglial cell line was used to determine the effects of Ex-4 on lipopolysaccharide (LPS)-induced inflammatory response. Results Exendin-4 dramatically reduced the BRB permeability induced by IR injury, which was associated with suppression of inflammatory gene expression. Moreover, in vitro studies showed that Ex-4 also reduced the inflammatory response to LPS and inhibited NF-κB activation. Conclusions The present work suggests that Ex-4 can prevent IR injury–induced BRB breakdown and inflammation through inhibition of inflammatory cytokine production by activated microglia and may provide a novel option for therapeutic intervention in diseases involving retinal inflammation.


Diabetes | 2014

mTORC1-independent reduction of retinal protein synthesis in type 1 diabetes

Patrice E. Fort; Mandy Losiewicz; Subramaniam Pennathur; Leonard S. Jefferson; Scot R. Kimball; Steven F. Abcouwer; Thomas W. Gardner

Poorly controlled diabetes has long been known as a catabolic disorder with profound loss of muscle and fat body mass resulting from a simultaneous reduction in protein synthesis and enhanced protein degradation. By contrast, retinal structure is largely maintained during diabetes despite reduced Akt activity and increased rate of cell death. Therefore, we hypothesized that retinal protein turnover is regulated differently than in other insulin-sensitive tissues, such as skeletal muscle. Ins2Akita diabetic mice and streptozotocin-induced diabetic rats exhibited marked reductions in retinal protein synthesis matched by a concomitant reduction in retinal protein degradation associated with preserved retinal mass and protein content. The reduction in protein synthesis depended on both hyperglycemia and insulin deficiency, but protein degradation was only reversed by normalization of hyperglycemia. The reduction in protein synthesis was associated with diminished protein translation efficiency but, surprisingly, not with reduced activity of the mTORC1/S6K1/4E-BP1 pathway. Instead, diabetes induced a specific reduction of mTORC2 complex activity. These findings reveal distinctive responses of diabetes-induced retinal protein turnover compared with muscle and liver that may provide a new means to ameliorate diabetic retinopathy.

Collaboration


Dive into the Steven F. Abcouwer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alistair J. Barber

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cheng-Mao Lin

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge