Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven F. Baker is active.

Publication


Featured researches published by Steven F. Baker.


Journal of Virology | 2014

Influenza A virus attenuation by codon deoptimization of the NS gene for vaccine development

Aitor Nogales; Steven F. Baker; Emilio Ortiz-Riaño; Stephen Dewhurst; David J. Topham; Luis Martínez-Sobrido

ABSTRACT Influenza viral infection represents a serious public health problem that causes contagious respiratory disease, which is most effectively prevented through vaccination to reduce transmission and future infection. The nonstructural (NS) gene of influenza A virus encodes an mRNA transcript that is alternatively spliced to express two viral proteins, the nonstructural protein 1 (NS1) and the nuclear export protein (NEP). The importance of the NS gene of influenza A virus for viral replication and virulence has been well described and represents an attractive target to generate live attenuated influenza viruses with vaccine potential. Considering that most amino acids can be synthesized from several synonymous codons, this study employed the use of misrepresented mammalian codons (codon deoptimization) for the de novo synthesis of a viral NS RNA segment based on influenza A/Puerto Rico/8/1934 (H1N1) (PR8) virus. We generated three different recombinant influenza PR8 viruses containing codon-deoptimized synonymous mutations in coding regions comprising the entire NS gene or the mRNA corresponding to the individual viral protein NS1 or NEP, without modifying the respective splicing and packaging signals of the viral segment. The fitness of these synthetic viruses was attenuated in vivo, while they retained immunogenicity, conferring both homologous and heterologous protection against influenza A virus challenges. These results indicate that influenza viruses can be effectively attenuated by synonymous codon deoptimization of the NS gene and open the possibility of their use as a safe vaccine to prevent infections with these important human pathogens. IMPORTANCE Vaccination serves as the best therapeutic option to protect humans against influenza viral infections. However, the efficacy of current influenza vaccines is suboptimal, and novel approaches are necessary for the prevention of disease cause by this important human respiratory pathogen. The nonstructural (NS) gene of influenza virus encodes both the multifunctional nonstructural protein 1 (NS1), essential for innate immune evasion, and the nuclear export protein (NEP), required for the nuclear export of viral ribonucleoproteins and for timing of the virus life cycle. Here, we have generated a recombinant influenza A/Puerto Rico/8/1934 (H1N1) (PR8) virus containing a codon-deoptimized NS segment that is attenuated in vivo yet retains immunogenicity and protection efficacy against homologous and heterologous influenza virus challenges. These results open the exciting possibility of using this NS codon deoptimization methodology alone or in combination with other approaches for the future development of vaccine candidates to prevent influenza viral infections.


ACS Chemical Biology | 2013

Crystallographic fragment screening and structure-based optimization yields a new class of influenza endonuclease inhibitors.

Joseph D. Bauman; Disha Patel; Steven F. Baker; R. S. K. Vijayan; Amy Xiang; Ajit Parhi; Luis Martínez-Sobrido; Edmond J. LaVoie; Kalyan Das; Eddy Arnold

Seasonal and pandemic influenza viruses continue to be a leading global health concern. Emerging resistance to the current drugs and the variable efficacy of vaccines underscore the need for developing new flu drugs that will be broadly effective against wild-type and drug-resistant influenza strains. Here, we report the discovery and development of a class of inhibitors targeting the cap-snatching endonuclease activity of the viral polymerase. A high-resolution crystal form of pandemic 2009 H1N1 influenza polymerase acidic protein N-terminal endonuclease domain (PAN) was engineered and used for fragment screening leading to the identification of new chemical scaffolds binding to the PAN active site cleft. During the course of screening, binding of a third metal ion that is potentially relevant to endonuclease activity was detected in the active site cleft of PAN in the presence of a fragment. Using structure-based optimization, we developed a highly potent hydroxypyridinone series of compounds from a fragment hit that defines a new mode of chelation to the active site metal ions. A compound from the series demonstrating promising enzymatic inhibition in a fluorescence-based enzyme assay with an IC50 value of 11 nM was found to have an antiviral activity (EC50) of 11 μM against PR8 H1N1 influenza A in MDCK cells.


Journal of Virology | 2013

Protection against Lethal Influenza with a Viral Mimic

Steven F. Baker; Hailong Guo; Randy A. Albrecht; Adolfo García-Sastre; David J. Topham; Luis Martínez-Sobrido

ABSTRACT Despite countermeasures against influenza virus that prevent (vaccines) and treat (antivirals) infection, this upper respiratory tract human pathogen remains a global health burden, causing both seasonal epidemics and occasional pandemics. More potent and safe new vaccine technologies would contribute significantly to the battle against influenza and other respiratory infections. Using plasmid-based reverse genetics techniques, we have developed a single-cycle infectious influenza virus (sciIV) with immunoprotective potential. In our sciIV approach, the fourth viral segment, which codes for the receptor-binding and fusion protein hemagglutinin (HA), has been removed. Thus, upon infection of normal cells, although no infectious progeny are produced, the expression of other viral proteins occurs and is immunogenic. Consequently, sciIV is protective against influenza homologous and heterologous viral challenges in a mouse model. Vaccination with sciIV protects in a dose- and replication-dependent manner, which is attributed to both humoral responses and T cells. Safety, immunogenicity, and protection conferred by sciIV vaccination were also demonstrated in ferrets, where this immunization additionally blocked direct and aerosol transmission events. All together, our studies suggest that sciIV may have potential as a broadly protective vaccine against influenza virus.


Journal of Virology | 2014

Influenza A and B Virus Intertypic Reassortment through Compatible Viral Packaging Signals

Steven F. Baker; Aitor Nogales; Courtney Finch; Kevin M. Tuffy; William Domm; Daniel R. Perez; David J. Topham; Luis Martínez-Sobrido

ABSTRACT Influenza A and B viruses cocirculate in humans and together cause disease and seasonal epidemics. These two types of influenza viruses are evolutionarily divergent, and exchange of genetic segments inside coinfected cells occurs frequently within types but never between influenza A and B viruses. Possible mechanisms inhibiting the intertypic reassortment of genetic segments could be due to incompatible protein functions of segment homologs, a lack of processing of heterotypic segments by influenza virus RNA-dependent RNA polymerase, an inhibitory effect of viral proteins on heterotypic virus function, or an inability to specifically incorporate heterotypic segments into budding virions. Here, we demonstrate that the full-length hemagglutinin (HA) of prototype influenza B viruses can complement the function of multiple influenza A viruses. We show that viral noncoding regions were sufficient to drive gene expression for either type A or B influenza virus with its cognate or heterotypic polymerase. The native influenza B virus HA segment could not be incorporated into influenza A virus virions. However, by adding the influenza A virus packaging signals to full-length influenza B virus glycoproteins, we rescued influenza A viruses that possessed HA, NA, or both HA and NA of influenza B virus. Furthermore, we show that, similar to single-cycle infectious influenza A virus, influenza B virus cannot incorporate heterotypic transgenes due to packaging signal incompatibilities. Altogether, these results demonstrate that the lack of influenza A and B virus reassortants can be attributed at least in part to incompatibilities in the virus-specific packaging signals required for effective segment incorporation into nascent virions. IMPORTANCE Reassortment of influenza A or B viruses provides an evolutionary strategy leading to unique genotypes, which can spawn influenza A viruses with pandemic potential. However, the mechanism preventing intertypic reassortment or gene exchange between influenza A and B viruses is not well understood. Nucleotides comprising the coding termini of each influenza A virus gene segment are required for specific segment incorporation during budding. Whether influenza B virus shares a similar selective packaging strategy or if packaging signals prevent intertypic reassortment remains unknown. Here, we provide evidence suggesting a similar mechanism of influenza B virus genome packaging. Furthermore, by appending influenza A virus packaging signals onto influenza B virus segments, we rescued recombinant influenza A/B viruses that could reassort in vitro with another influenza A virus. These findings suggest that the divergent evolution of packaging signals aids with the speciation of influenza A and B viruses and is in part responsible for the lack of intertypic viral reassortment.


The Journal of Infectious Diseases | 2015

High-Affinity H7 Head and Stalk Domain–Specific Antibody Responses to an Inactivated Influenza H7N7 Vaccine After Priming With Live Attenuated Influenza Vaccine

Jessica L. Halliley; Surender Khurana; Florian Krammer; Theresa Fitzgerald; Elizabeth M. Coyle; Ka Yan Chung; Steven F. Baker; Hongmei Yang; Luis Martínez-Sobrido; John J. Treanor; Kanta Subbarao; Hana Golding; David J. Topham; Mark Y. Sangster

Recent studies have shown that live attenuated influenza vaccines (LAIVs) expressing avian influenza virus hemagglutinins (HAs) prime for strong protective antibody responses to an inactivated influenza vaccine (IIV) containing the HA. To better understand this priming effect, we compared H7 HA head and stalk domain-specific B-cell responses in H7N7 LAIV-primed subjects and non-H7-primed controls after a single dose of H7N7 IIV. As previously reported, H7N7 LAIV-primed subjects but not control subjects generated strong hemagglutination-inhibiting and neutralizing antibody responses to the H7N7 IIV. Here, we found that the quantity, epitope diversity, and affinity of H7 head-specific antibodies increased rapidly in only H7N7 LAIV-primed subjects after receipt of the IIV. However, all cohorts generated a vigorous, high-affinity, stalk-specific antibody response. Consistent increases in circulating memory B-cell frequencies after receipt of the IIV reflected the specificity of high-affinity antibody production. Our findings emphasize the value of LAIVs as a vehicle for prepandemic vaccination.


Virology | 2015

Replication-competent influenza A viruses expressing a red fluorescent protein

Aitor Nogales; Steven F. Baker; Luis Martínez-Sobrido

Like most animal viruses, studying influenza A in model systems requires secondary methodologies to identify infected cells. To circumvent this requirement, we describe the generation of replication-competent influenza A red fluorescent viruses. These influenza A viruses encode mCherry fused to the viral non-structural 1 (NS1) protein and display comparable growth kinetics to wild-type viruses in vitro. Infection of cells with influenza A mCherry viruses was neutralized with monoclonal antibodies and inhibited with antivirals to levels similar to wild-type virus. Influenza A mCherry viruses were also able to lethally infect mice, and strikingly, dose- and time-dependent kinetics of viral replication were monitored in whole excised mouse lungs using an in vivo imaging system (IVIS). By eliminating the need for secondary labeling of infected cells, influenza A mCherry viruses provide an ideal tool in the ongoing struggle to better characterize the virus and identify new therapeutics against influenza A viral infections.


Journal of Immunology | 2014

The Specialized Proresolving Mediator 17-HDHA Enhances the Antibody-Mediated Immune Response against Influenza Virus: A New Class of Adjuvant?

Sesquile Ramon; Steven F. Baker; Julie Sahler; Nina Kim; Eric Feldsott; Charles N. Serhan; Luis Martínez-Sobrido; David J. Topham; Richard P. Phipps

Influenza viruses remain a critical global health concern. More efficacious vaccines are needed to protect against influenza virus, yet few adjuvants are approved for routine use. Specialized proresolving mediators (SPMs) are powerful endogenous bioactive regulators of inflammation, with great clinical translational properties. In this study, we investigated the ability of the SPM 17-HDHA to enhance the adaptive immune response using an OVA immunization model and a preclinical influenza vaccination mouse model. Our findings revealed that mice immunized with OVA plus 17-HDHA or with H1N1-derived HA protein plus 17-HDHA increased Ag-specific Ab titers. 17-HDHA increased the number of Ab-secreting cells in vitro and the number of HA-specific Ab-secreting cells present in the bone marrow. Importantly, the 17-HDHA–mediated increased Ab production was more protective against live pH1N1 influenza infection in mice. To our knowledge, this is the first report on the biological effects of ω-3-derived SPMs on the humoral immune response. These findings illustrate a previously unknown biological link between proresolution signals and the adaptive immune system. Furthermore, this work has important implications for the understanding of B cell biology, as well as the development of new potential vaccine adjuvants.


Journal of Virology | 2015

Development of a Mouse-Adapted Live Attenuated Influenza Virus That Permits In Vivo Analysis of Enhancements to the Safety of Live Attenuated Influenza Virus Vaccine

Andrew Cox; Steven F. Baker; Aitor Nogales; Luis Martínez-Sobrido; Stephen Dewhurst

ABSTRACT The live attenuated influenza virus vaccine (LAIV) is preferentially recommended for use in persons 2 through 49 years of age but has not been approved for children under 2 or asthmatics due to safety concerns. Therefore, increasing safety is desirable. Here we describe a murine LAIV with reduced pathogenicity that retains lethality at high doses and further demonstrate that we can enhance safety in vivo through mutations within NS1. This model may permit preliminary safety analysis of improved LAIVs.


Open Forum Infectious Diseases | 2015

Comparison of Serum Hemagglutinin and Neuraminidase Inhibition Antibodies After 2010–2011 Trivalent Inactivated Influenza Vaccination in Healthcare Personnel

Maryrose Laguio-Vila; Mark G. Thompson; Sue Reynolds; Sarah Spencer; Manjusha Gaglani; Allison L. Naleway; Sarah Ball; Sam Bozeman; Steven F. Baker; Luis Martínez-Sobrido; Min Z. Levine; Jackie Katz; Alicia M. Fry; John J. Treanor

Background. Most inactivated influenza vaccines contain purified and standardized hemagglutinin (HA) and residual neuraminidase (NA) antigens. Vaccine-associated HA antibody responses (hemagglutination inhibition [HAI]) are well described, but less is known about the immune response to the NA. Methods. Serum of 1349 healthcare personnel (HCP) electing or declining the 2010–2011 trivalent-inactivated influenza vaccine ([IIV3], containing A/California/7/2009 p(H1N1), A/Perth/16/2009 [H3N2], B/Brisbane/60/2008 strains) were tested for NA-inhibiting (NAI) antibody by a modified lectin-based assay using pseudotyped N1 and N2 influenza A viruses with an irrelevant (H5) HA. Neuraminidase-inhibiting and HAI antibody titers were evaluated approximately 30 days after vaccination and end-of-season for those with polymerase chain reaction (PCR)-confirmed influenza infection. Results. In 916 HCP (68%) receiving IIV3, a 2-fold increase in N1 and N2 NAI antibody occurred in 63.7% and 47.3%, respectively. Smaller responses occurred in HCP age >50 years and those without prior 2009–2010 IIV3 nor monovalent A(H1N1)pdm09 influenza vaccinations. Forty-four PCR-confirmed influenza infections were observed, primarily affecting those with lower pre-exposure HAI and NAI antibodies. Higher pre-NAI titers correlated with shorter duration of illness for A(H1N1)pdm09 virus infections. Conclusions. Trivalent-inactivated influenza vaccine is modestly immunogenic for N1 and N2 antigens in HCP. Vaccines eliciting robust NA immune responses may improve efficacy and reduce influenza-associated morbidity.


Journal of Virology | 2014

Induction of CD8 T Cell Heterologous Protection by a Single Dose of Single-Cycle Infectious Influenza Virus

Hailong Guo; Steven F. Baker; Luis Martínez-Sobrido; David J. Topham

ABSTRACT The effector functions of specific CD8 T cells are crucial in mediating influenza heterologous protection. However, new approaches for influenza vaccines that can trigger effective CD8 T cell responses have not been extensively explored. We report here the generation of single-cycle infectious influenza virus that lacks a functional hemagglutinin (HA) gene on an X31 genetic background and demonstrate its potential for triggering protective CD8 T cell immunity against heterologous influenza virus challenge. In vitro, X31-sciIV can infect MDCK cells, but infectious virions are not produced unless HA is transcomplemented. In vivo, intranasal immunization with X31-sciIV does not cause any clinical symptoms in mice but generates influenza-specific CD8 T cells in lymphoid (mediastinal lymph nodes and spleen) and nonlymphoid tissues, including lung and bronchoalveolar lavage fluid, as measured by H2-Db NP366 and PA224 tetramer staining. In addition, a significant proportion of X31-sciIV-induced antigen-specific respiratory CD8 T cells expressed VLA-1, a marker that is associated with heterologous influenza protection. Further, these influenza-specific CD8 T cells produce antiviral cytokines when stimulated with NP366 and PA224 peptides, indicating that CD8 T cells triggered by X31-sciIV are functional. When challenged with a lethal dose of heterologous PR8 virus, X31-sciIV-primed mice were fully protected from death. However, when CD8 T cells were depleted after priming or before priming, mice could not effectively control virus replication or survive the lethal challenge, indicating that X31-sciIV-induced memory CD8 T cells mediate the heterologous protection. Thus, our results demonstrate the potential for sciIV as a CD8 T cell-inducing vaccine. IMPORTANCE One of the challenges for influenza prevention is the existence of multiple influenza virus subtypes and variants and the fact that new strains can emerge yearly. Numerous studies have indicated that the effector functions of specific CD8 T cells are crucial in mediating influenza heterologous protection. However, influenza vaccines that can trigger effective CD8 T cell responses for heterologous protection have not been developed. We report here the generation of an X31 (H3N2) virus-derived single-cycle infectious influenza virus, X31-sciIV. A one-dose immunization with X31-sciIV is capable of inducing functional influenza virus-specific CD8 T cells that can be recruited into respiratory tissues and provide protection against lethal heterologous challenge. Without these cells, protection against lethal challenge was essentially lost. Our data indicate that an influenza vaccine that primarily relies on CD8 T cells for protection could be developed.

Collaboration


Dive into the Steven F. Baker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John J. Treanor

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William Domm

University of Rochester

View shared research outputs
Top Co-Authors

Avatar

Hailong Guo

University of Rochester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles N. Serhan

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge