Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven G. Ball is active.

Publication


Featured researches published by Steven G. Ball.


International Journal of Biological Macromolecules | 1998

Starch granules: structure and biosynthesis

Alain Buléon; Paul Colonna; Véronique Planchot; Steven G. Ball

The emphasis of this review is on starch structure and its biosynthesis. Improvements in understanding have been brought about during the last decade through the development of new physicochemical and biological techniques, leading to real scientific progress. All this literature needs to be kept inside the general literature about biopolymers, despite some confusing results or discrepancies arising from the biological variability of starch. However, a coherent picture of starch over all the different structural levels can be presented, in order to obtain some generalizations about its structure. In this review we will focus first on our present understanding of the structures of amylose and amylopectin and their organization within the granule, and we will then give insights on the biosynthetic mechanisms explaining the biogenesis of starch in plants.


Cell | 1996

From Glycogen to Amylopectin: A Model for the Biogenesis of the Plant Starch Granule

Steven G. Ball; Hanping Guan; Martha G. James; Alan M. Myers; Peter L. Keeling; Grégory Mouille; Alain Buléon; Paul Colonna; Jack Preiss

A major feature of the model we propose is that it gives us access to the third dimension of granule growth. The crystal lamella is a planar arrangement allowing for the three dimensional piling of glucan double helices (Figure 1Figure 1). The amorphous lamella on the other hand will not be planar but space-filling as can be predicted by the synthesis of phytoglycogen. At this stage the processing of phytoglycogen can lead to a variety of three dimensional structures that will allow for three dimensional extension of the amylopectin molecule. It is easy to understand how this is needed to accomodate regular concentric growth of the starch granule. Oostergetel and van Bruggen (1993) have very recently examined sections of potato starch granules by electron optical tomography and by cryo–electron diffraction. Their data imply a superhelical arrangement of both amorphous and crystalline lamellae. Moreover distinct superhelices are interlocked through their respective amorphous and crystalline lamellae to yield a tetragonal symmetry (Figure 3Figure 3). In this three dimensional arrangement, the double helical glucans are pointing in the axis of the superhelix towards the surface of the granule. This will of course allow for synthesis and growth of the crystals at the surface. This structure raises several questions with respect to biosynthesis, namely what determines the superhelical growth and how can this unidirectional growth account for concentric growth of the starch granule. We believe these questions can be presently addressed by our model. If we assume that the branching enzymes are setting the invariant amylopectin cluster size through their minimal catalytic requirements (see above), then once the first turn of the superhelix is synthesized the following turns will be dictated through this requirement. Concentric growth of the granule will call for synthesis of novel superhelices. These can be readily synthesized by allowing the amorphous lamella to fill vacant spaces between the growing superhelices. When sufficient space is available a novel superhelix will be made to grow by induced fit with the neighboring tetragonal organization. Debranching enzymes remain required at the surface to prevent glycogen synthesis and allow the trimming of the amorphous lamellae. The induced fit hypothesis for starch growth only requires the understanding of amylopectin cluster synthesis as proposed in our two dimensional model. Understanding how the first turn of the superhelices are generated will require further insight as to the priming events occurring at the granule core.Figure 3A Superhelical Model for the Three Dimensional Organization of Starch(A) The superhelical three dimensional organization of a section of the starch granule (based onOostergetel and van Bruggen 1993xOostergetel, G.T. and van Bruggen, E.F.J. Carbohydr. Polym. 1993; 21: 7–12Crossref | Scopus (138)See all ReferencesOostergetel and van Bruggen 1993). The top of the figure corresponds to the granules surface. The shaded areas correspond to the amorphous lamellae of the amylopectin molecules.(B) An enlargement of a single turn of the superhelix to display the double helices of the crystal lamellae. The shaded section would have overall structures similar to those shown for the amorphous lamellae in Figure 1Figure 1. Each superhelix is interlocked to neighboring superhelices to generate a tetragonal organization. We propose that vacant spaces are filled with amorphous material until sufficient room is available to yield a novel superhelix.View Large Image | View Hi-Res Image | Download PowerPoint Slide


Science | 2012

Cyanophora paradoxa Genome Elucidates Origin of Photosynthesis in Algae and Plants

Dana C. Price; Cheong Xin Chan; Hwan Su Yoon; Eun Chan Yang; Huan Qiu; Andreas P. M. Weber; Rainer Schwacke; Jeferson Gross; Nicolas A. Blouin; Chris E. Lane; Adrian Reyes-Prieto; Dion G. Durnford; Jonathan A.D. Neilson; B. Franz Lang; Gertraud Burger; Jürgen M. Steiner; Wolfgang Löffelhardt; Jonathan E. Meuser; Matthew C. Posewitz; Steven G. Ball; Maria Cecilia Arias; Bernard Henrissat; Pedro M. Coutinho; Stefan A. Rensing; Aikaterini Symeonidi; Harshavardhan Doddapaneni; Beverley R. Green; Veeran D. Rajah; Jeffrey L. Boore; Debashish Bhattacharya

Plastid Origins The glaucophytes, represented by the alga Cyanophora paradoxa, are the putative sister group of red and green algae and plants, which together comprise the founding group of photosynthetic eukaryotes, the Plantae. In their analysis of the genome of C. paradoxa, Price et al. (p. 843; see the Perspective by Spiegel) demonstrate a unique origin for the plastid in the ancestor of this supergroup, which retains much of the ancestral diversity in genes involved in carbohydrate metabolism and fermentation, as well as in the gene content of the mitochondrial genome. Moreover, about 3.3% of nuclear genes in C. paradoxa seem to carry a signal of cyanobacterial ancestry, and key genes involved in starch biosynthesis are derived from energy parasites such as Chlamydiae. Rapid radiation, reticulate evolution via horizontal gene transfer, high rates of gene divergence, loss, and replacement, may have diffused the evolutionary signals within this supergroup, which perhaps explains previous difficulties in resolving its evolutionary history. An ancient algal genome suggests a unique origin of the plastid in the ancestor to plants, algae, and glaucophytes. The primary endosymbiotic origin of the plastid in eukaryotes more than 1 billion years ago led to the evolution of algae and plants. We analyzed draft genome and transcriptome data from the basally diverging alga Cyanophora paradoxa and provide evidence for a single origin of the primary plastid in the eukaryote supergroup Plantae. C. paradoxa retains ancestral features of starch biosynthesis, fermentation, and plastid protein translocation common to plants and algae but lacks typical eukaryotic light-harvesting complex proteins. Traces of an ancient link to parasites such as Chlamydiae were found in the genomes of C. paradoxa and other Plantae. Apparently, Chlamydia-like bacteria donated genes that allow export of photosynthate from the plastid and its polymerization into storage polysaccharide in the cytosol.


Metabolic Engineering | 2010

Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol

Yantao Li; Danxiang Han; Guongrong Hu; David Dauvillée; Milton Sommerfeld; Steven G. Ball; Qiang Hu

Many microalgae and plants have the ability to synthesize large amounts of triacylglycerol (TAG) that can be used to produce biofuels. Presently, TAG-based biofuel production is limited by the feedstock supply. Metabolic engineering of lipid synthesis pathways to overproduce TAGs in oleaginous microalgae and oil crop plants has achieved only modest success. We demonstrate that inactivation of ADP-glucose pyrophosphorylase in a Chlamydomonas starchless mutant led to a 10-fold increase in TAG, suggesting that shunting of photosynthetic carbon partitioning from starch to TAG synthesis may represent a more effective strategy than direct manipulation of the lipid synthesis pathway to overproduce TAG.


Nature | 2012

Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs

Bruce A. Curtis; Goro Tanifuji; Fabien Burki; Ansgar Gruber; Manuel Irimia; Shinichiro Maruyama; Maria Cecilia Arias; Steven G. Ball; Gillian H. Gile; Yoshihisa Hirakawa; Julia F. Hopkins; Alan Kuo; Stefan A. Rensing; Jeremy Schmutz; Aikaterini Symeonidi; Marek Eliáš; Robert J M Eveleigh; Emily K. Herman; Mary J. Klute; Takuro Nakayama; Miroslav Oborník; Adrian Reyes-Prieto; E. Virginia Armbrust; Stephen J. Aves; Robert G. Beiko; Pedro M. Coutinho; Joel B. Dacks; Dion G. Durnford; Naomi M. Fast; Beverley R. Green

Cryptophyte and chlorarachniophyte algae are transitional forms in the widespread secondary endosymbiotic acquisition of photosynthesis by engulfment of eukaryotic algae. Unlike most secondary plastid-bearing algae, miniaturized versions of the endosymbiont nuclei (nucleomorphs) persist in cryptophytes and chlorarachniophytes. To determine why, and to address other fundamental questions about eukaryote–eukaryote endosymbiosis, we sequenced the nuclear genomes of the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans. Both genomes have >21,000 protein genes and are intron rich, and B. natans exhibits unprecedented alternative splicing for a single-celled organism. Phylogenomic analyses and subcellular targeting predictions reveal extensive genetic and biochemical mosaicism, with both host- and endosymbiont-derived genes servicing the mitochondrion, the host cell cytosol, the plastid and the remnant endosymbiont cytosol of both algae. Mitochondrion-to-nucleus gene transfer still occurs in both organisms but plastid-to-nucleus and nucleomorph-to-nucleus transfers do not, which explains why a small residue of essential genes remains locked in each nucleomorph.


The Plant Cell | 1996

Preamylopectin Processing: A Mandatory Step for Starch Biosynthesis in Plants.

Grégory Mouille; Marie-Lise Maddelein; Nathalie Libessart; Phiiippe Talaga; André Decq; Brigitte Delrue; Steven G. Ball

It has been generally assumed that the [alpha]-(1->4)-linked and [alpha]-(1->6)-branched glucans of starch are generated by the coordinated action of elongation (starch synthases) and branching enzymes. We have identified a novel Chlamydomonas locus (STA7) that when defective leads to a wipeout of starch and its replacement by a small amount of glycogen-like material. Our efforts to understand the enzymological basis of this phenotype have led us to determine the selective disappearance of an 88-kD starch hydrolytic activity. We further demonstrate that this enzyme is a debranching enzyme. Cleavage of the [alpha]-(1->6) linkage in a branched precursor of amylopectin (preamylopectin) has provided us with the ground rules for understanding starch biosynthesis in plants. Therefore, we propose that amylopectin clusters are synthesized by a discontinuous mechanism involving a highly specific glucan trimming mechanism.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida

Jonas Collén; Betina M. Porcel; Wilfrid Carré; Steven G. Ball; Cristian Chaparro; Thierry Tonon; Tristan Barbeyron; Gurvan Michel; Benjamin Noel; Klaus Valentin; Marek Eliáš; François Artiguenave; Alok Arun; Jean-Marc Aury; Jose Fernandes Barbosa-Neto; John H. Bothwell; François-Yves Bouget; Loraine Brillet; Francisco Cabello-Hurtado; Salvador Capella-Gutiérrez; Bénédicte Charrier; Lionel Cladière; J. Mark Cock; Susana M. Coelho; Christophe Colleoni; Mirjam Czjzek; Corinne Da Silva; Ludovic Delage; Philippe Deschamps; Simon M. Dittami

Red seaweeds are key components of coastal ecosystems and are economically important as food and as a source of gelling agents, but their genes and genomes have received little attention. Here we report the sequencing of the 105-Mbp genome of the florideophyte Chondrus crispus (Irish moss) and the annotation of the 9,606 genes. The genome features an unusual structure characterized by gene-dense regions surrounded by repeat-rich regions dominated by transposable elements. Despite its fairly large size, this genome shows features typical of compact genomes, e.g., on average only 0.3 introns per gene, short introns, low median distance between genes, small gene families, and no indication of large-scale genome duplication. The genome also gives insights into the metabolism of marine red algae and adaptations to the marine environment, including genes related to halogen metabolism, oxylipins, and multicellularity (microRNA processing and transcription factors). Particularly interesting are features related to carbohydrate metabolism, which include a minimalistic gene set for starch biosynthesis, the presence of cellulose synthases acquired before the primary endosymbiosis showing the polyphyly of cellulose synthesis in Archaeplastida, and cellulases absent in terrestrial plants as well as the occurrence of a mannosylglycerate synthase potentially originating from a marine bacterium. To explain the observations on genome structure and gene content, we propose an evolutionary scenario involving an ancestral red alga that was driven by early ecological forces to lose genes, introns, and intergenetic DNA; this loss was followed by an expansion of genome size as a consequence of activity of transposable elements.


Trends in Plant Science | 1998

Progress in understanding the biosynthesis of amylose

Steven G. Ball; Marion van de Wal; Richard G. F. Visser

Abstract The storage of glucose in insoluble granules is a distinctive feature of plant cells. Biosynthesis of amylose, the minor low molecular mass fraction of starch occurs from ADP-glucose. This takes place within the polysaccharide matrix through the action of granule-bound starch synthase, the major protein associated with the granule. Recently, amylose has been successfully synthesized in vitro from purified granules. Two models have been proposed to explain the mechanism of amylose synthesis in plants. The first calls for priming of synthesis through small-size malto-oligosaccharides. The second suggests that glucans are extended by granule-bound starch synthase from a high molecular mass primer present within the granule. This extension is terminated through cleavage to produce amylose. This process is subsequently repeated to give several rounds of amylose synthesis.


Plant Physiology | 2005

Mutants of Arabidopsis Lacking a Chloroplastic Isoamylase Accumulate Phytoglycogen and an Abnormal Form of Amylopectin

Fabrice Wattebled; Ying Dong; Sylvain Dumez; David Delvallé; Véronique Planchot; Pierre Berbezy; Darshna Vyas; Paul Colonna; Manash Chatterjee; Steven G. Ball; Christophe D'Hulst

Mutant lines defective for each of the four starch debranching enzyme (DBE) genes (AtISA1, AtISA2, AtISA3, and AtPU1) detected in the nuclear genome of Arabidopsis (Arabidopsis thaliana) were produced and analyzed. Our results indicate that both AtISA1 and AtISA2 are required for the production of a functional isoamylase-type of DBE named Iso1, the major isoamylase activity found in leaves. The absence of Iso1 leads to an 80% decrease in the starch content in both lines and to the accumulation of water-soluble polysaccharides whose structure is similar to glycogen. In addition, the residual amylopectin structure in the corresponding mutant lines displays a strong modification when compared to the wild type, suggesting a direct, rather than an indirect, function of Iso1 during the synthesis of amylopectin. Mutant lines carrying a defect in AtISA3 display a strong starch-excess phenotype at the end of both the light and the dark phases accompanied by a small modification of the amylopectin structure. This result suggests that this isoamylase-type of DBE plays a major role during starch mobilization. The analysis of the Atpu1 single-mutant lines did not lead to a distinctive phenotype. However, Atisa2/Atpu1 double-mutant lines display a 92% decrease in starch content. This suggests that the function of pullulanase partly overlaps that of Iso1, although its implication remains negligible when Iso1 is present within the cell.


Journal of Experimental Botany | 2011

The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis

Steven G. Ball; Christophe Colleoni; Ugo Cenci; Jenifer Nirmal Raj; Catherine Tirtiaux

Solid semi-crystalline starch and hydrosoluble glycogen define two distinct physical states of the same type of storage polysaccharide. Appearance of semi-crystalline storage polysaccharides appears linked to the requirement of unicellular diazotrophic cyanobacteria to fuel nitrogenase and protect it from oxygen through respiration of vast amounts of stored carbon. Starch metabolism itself resulted from the merging of the bacterial and eukaryote pathways of storage polysaccharide metabolism after endosymbiosis of the plastid. This generated the three Archaeplastida lineages: the green algae and land plants (Chloroplastida), the red algae (Rhodophyceae), and the glaucophytes (Glaucophyta). Reconstruction of starch metabolism in the common ancestor of Archaeplastida suggests that polysaccharide synthesis was ancestrally cytosolic. In addition, the synthesis of cytosolic starch from the ADP-glucose exported from the cyanobacterial symbiont possibly defined the original metabolic flux by which the cyanobiont provided photosynthate to its host. Additional evidence supporting this scenario include the monophyletic origin of the major carbon translocators of the inner membrane of eukaryote plastids which are sisters to nucleotide-sugar transporters of the eukaryote endomembrane system. It also includes the extent of enzyme subfunctionalization that came as a consequence of the rewiring of this pathway to the chloroplasts in the green algae. Recent evidence suggests that, at the time of endosymbiosis, obligate intracellular energy parasites related to extant Chlamydia have donated important genes to the ancestral starch metabolism network.

Collaboration


Dive into the Steven G. Ball's collaboration.

Top Co-Authors

Avatar

Christophe Colleoni

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

David Dauvillée

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Christophe D'Hulst

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Alain Buléon

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Fabrice Wattebled

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ugo Cenci

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Matthew K. Morell

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brigitte Delrue

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge