Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven G. Hallett is active.

Publication


Featured researches published by Steven G. Hallett.


PLOS Biology | 2006

Invasive Plant Suppresses the Growth of Native Tree Seedlings by Disrupting Belowground Mutualisms

Kristina A. Stinson; Stuart A. Campbell; Jeff R. Powell; Benjamin E. Wolfe; Ragan M. Callaway; Giles C. Thelen; Steven G. Hallett; Daniel Prati; John N. Klironomos

The impact of exotic species on native organisms is widely acknowledged, but poorly understood. Very few studies have empirically investigated how invading plants may alter delicate ecological interactions among resident species in the invaded range. We present novel evidence that antifungal phytochemistry of the invasive plant, Alliaria petiolata, a European invader of North American forests, suppresses native plant growth by disrupting mutualistic associations between native canopy tree seedlings and belowground arbuscular mycorrhizal fungi. Our results elucidate an indirect mechanism by which invasive plants can impact native flora, and may help explain how this plant successfully invades relatively undisturbed forest habitat.


Ecology | 2008

NOVEL WEAPONS: INVASIVE PLANT SUPPRESSES FUNGAL MUTUALISTS IN AMERICA BUT NOT IN ITS NATIVE EUROPE

Ragan M. Callaway; Don Cipollini; Kathryn Barto; Giles C. Thelen; Steven G. Hallett; Daniel Prati; Kristina A. Stinson; John N. Klironomos

Why some invasive plant species transmogrify from weak competitors at home to strong competitors abroad remains one of the most elusive questions in ecology. Some evidence suggests that disproportionately high densities of some invaders are due to the release of biochemicals that are novel, and therefore harmful, to naive organisms in their new range. So far, such evidence has been restricted to the direct phytotoxic effects of plants on other plants. Here we found that one of North Americas most aggressive invaders of undisturbed forest understories, Alliaria petiolata (garlic mustard) and a plant that inhibits mycorrhizal fungal mutualists of North American native plants, has far stronger inhibitory effects on mycorrhizas in invaded North American soils than on mycorrhizas in European soils where A. petiolata is native. This antifungal effect appears to be due to specific flavonoid fractions in A. petiolata extracts. Furthermore, we found that suppression of North American mycorrhizal fungi by A. petiolata corresponds with severe inhibition of North American plant species that rely on these fungi, whereas congeneric European plants are weakly affected. These results indicate that phytochemicals, benign to resistant mycorrhizal symbionts in the home range, may be lethal to naïve native mutualists in the introduced range and indirectly suppress the plants that rely on them.


Weed Science | 2005

Where are the bioherbicides

Steven G. Hallett

Abstract Since commercialization of Collego™ and Devine™ in the early 1980s, there has been a small but consistent research effort in the area of bioherbicides. The bioherbicide approach has promised effective weed management in cropping systems where the classical approach (using exotic natural enemies) is largely unsuitable. The overriding principle of the bioherbicide approach has been that a host-specific, coevolved natural enemy can be used as a bioherbicide when applied in simple formulations at inundative levels; however, two decades of research has effectively disproven this principle. Although research has revealed weaknesses in the bioherbicide approach, it has also revealed potential in a number of areas. A number of niche situations will remain in which host-specific plant pathogens can be developed as bioherbicides, such as for parasitic weeds and narcotic plants, but more research should be conducted with virulent, broad host range organisms, and more effort should be devoted to developing techniques for the cultural and genetic enhancement of bioherbicidal organisms.


Weed Science | 2006

Dislocation from coevolved relationships: a unifying theory for plant invasion and naturalization?

Steven G. Hallett

Invasions of many different plants have occurred in ecosystems around the world and theories of the mechanisms of these invasions abound. All the proposed theories have value, and many of the proposed mechanisms may at least serve as facilitating factors, but no overarching conceptual framework for the mechanisms of plant invasion has emerged. One common theme in all invasions is that the invading plant, in the process of geographic displacement, has been dislocated from its coevolved biota and relocated with a less-familiar biota. The impacts of dislocation from coevolved mutualists, parasites, and competitors are different but follow general principles. The impacts of relocation with new mutualists, parasites, and competitors are also variable and will change as the introduced plant coevolves with its new biotic environment. I propose some hypotheses to guide predictions of the outcomes of the dislocation of plants from coevolved relationships and, hence, the outcomes of plant geographic displacement. Invasiveness in plants is not determined by their life history traits or the nature of the ecosystem they are invading. Invasiveness is primarily a result of the process of invasion itself. When plants are dislocated from coevolved relationships and confronted with new relationships, they can become ecologically transformed. This transformation can affect the ability of a plant population to become established, invasive, and naturalized in a new environment.


Weed Science | 2006

Weed seed mortality in soils with contrasting agricultural management histories

Adam S. Davis; Kathleen I. Anderson; Steven G. Hallett; Karen A. Renner

giant foxtail ( 2 0.52, P , 0.05) and velvetleaf (2 0.57, P , 0.01) seed mortality, as did ordination with nonmetric multidimensional scaling (NMS) [giant foxtail (2 0.54, P , 0.01) and velvetleaf (2 0.60, P , 0.01)], suggesting that seeds of the two species were affected similarly by changes in the soil fungal community. For giant foxtail, weed seed mortality was also positively correlated (r 5 0.48, P , 0.05) with the first NMS axis of the bacterial 16S rDNA analysis. None of the other measured soil properties were significantly correlated with weed seed mortality. Thus, for the soils tested here, management history, microbial community composition, and weed seed mortality were linked. To extend these results to the field, more work is needed to identify components of the fungal and bacterial communities that are active in seed degradation, and to develop conservation biocontrol recommendations for these species. Nomenclature: Giant foxtail, Setaria faberi Herrm., SETFA; velvetleaf, Abutilon theophrasti Medik., ABUTH.


Weed Science | 2004

Herbicidal spectrum and activity of Myrothecium verrucaria

Kathleen I. Anderson; Steven G. Hallett

Abstract Myrothecium verrucaria, isolated from sicklepod, was investigated for bioherbicide potential against a wide range of economically important weed species from agronomic, pasture, and horticultural systems. A number of different weed species from a range of plant families were highly susceptible to sprays of crude preparations of the fungus. A small number of species, primarily monocots, were tolerant, showing no damage symptoms or insignificant effects on biomass. Symptoms developed very rapidly in susceptible hosts, suggesting the activity of toxins, several of which are known to be produced by Myrothecium spp. The activity of crude harvests of M. verrucaria was not diminished when they were filtered to remove fungal mycelium and spores. In contrast, washed conidia had relatively little impact on weed species. We conclude that the activity of M. verrucaria is primarily caused by the activity of metabolites produced by the fungus in culture and not due to infection by the fungus per se. Myrothecium verrucaria cultural preparations have extremely potent herbicidal properties, but given its ability to produce mammalian toxins, we caution against its use. Nomenclature: Myrothecium verrucaria (Alb. & Schwein.) Ditmar:Fr. (Hyphomycetes); sicklepod, Cassia obtusifolia L. CASOB.


Weed Science | 2006

Interactions between chemical herbicides and the candidate bioherbicide Microsphaeropsis amaranthi

David A. Smith; Steven G. Hallett

Abstract The fungal plant pathogen Microsphaeropsis amaranthi is virulent against a number of key weeds in the Amaranthaceae, including common waterhemp, and is under investigation as a bioherbicide. Common waterhemp has become a key weed in midwestern crop production systems and is a good target for a bioherbicide that could be integrated into weed management systems. We investigated the direct effects of a range of chemical herbicides and adjuvants upon conidia of M. amaranthi and found that many herbicides and most adjuvants were strongly inhibitory to germination. On the other hand, M. amaranthi was compatible with a selection of postemergence herbicides commonly used in midwestern weed management systems, including carfentrazone, chloransulam, and imazethapyr. Most glyphosate products suppressed or abolished germination of M. amaranthi conidia, but by testing adjuvants commonly used in glyphosate products and technical-grade glyphosate salts, it was revealed that this inhibition was due to formulation additives and not the active ingredient. When glyphosate and conidia of M. amaranthi were sprayed onto common waterhemp seedlings, the herbicide predisposed plants to infection by M. amaranthi. When M. amaranthi was applied 1 to 3 d after glyphosate, the glyphosate rate required to control common waterhemp was reduced by half. Similar results were observed on clones propagated from a common waterhemp plant resistant to glyphosate. When M. amaranthi was applied to seedlings 2 d before glyphosate, the efficacy of the herbicide was reduced. These findings demonstrate that positive interactions between herbicides and M. amaranthi exist but reveal practical difficulties that may limit the integration of the strategy in the field. Nomenclature: Microsphaeropsis amaranthi (Ell. & Barth.); common waterhemp, Amaranthus rudis Sauer, AMATA.


Weed Technology | 2001

Performance of Colletotrichum dematium for the Control of Fireweed (Epilobium angustifolium) Improved with Formulation 1

Christian Léger; Steven G. Hallett; Alan K. Watson

Abstract: The potential of Colletotrichum dematium f.sp. epilobii (ATCC 20981) to control fireweed (Epilobium angustifolium) was investigated. Under controlled environment conditions, plant age, inoculum density, length of the dew period, and temperature during the dew period affected the efficacy of C. dematium f.sp. epilobii. Seedlings sprayed with 1 × 109 conidia/m2 sustained the most damage. Susceptibility decreased with increasing plant age, and 10-wk-old plants were slightly affected by the fungus. Satisfactory levels of control were achieved when the dew period was >20 h and temperature during the dew period was 30 C. Control of fireweed increased when the C. dematium f.sp. epilobii conidia were suspended in a 25% v/v canola oil/water emulsion. Using this formulation, control of 4-wk-old seedlings was obtained with a 10-fold reduction in inoculum concentration (1 × 108 conidia/m2), the required dew period was reduced to 12 h, and the effect of the temperature during the dew period was minimized. In the field, C. dematium f.sp. epilobii alone or when amended with an oil emulsion failed to control fireweed growth. When the oil formulation of C. dematium f.sp. epilobii was tank mixed with a low rate of glyphosate, high levels of control were consistently achieved. Growth reduction achieved with this formulation was more than additive, suggesting a synergistic interaction. The effectiveness of the formulated conidial suspension of C. dematium f.sp. epilobii decreased with plant maturity, and 15-wk-old plants were not controlled. C. dematium f.sp. epilobii alone has limited potential as a candidate bioherbicide, but when formulated in an oil/water emulsion and combined with low rates of glyphosate, suppression of fireweed can be attained in the field. Nomenclature: Glyphosate; fireweed, Epilobium angustifolium L. #3 CNAAN. Additional index words: Bioherbicide, biological weed control, mycoherbicide. Abbreviations: PDA, potato dextrose agar; SNK, Student-Newman-Keuls Multiple Range test.


Weed Science | 2012

Response of Giant Ragweed (Ambrosia trifida), Horseweed (Conyza canadensis), and Common Lambsquarters (Chenopodium album) Biotypes to Glyphosate in the Presence and Absence of Soil Microorganisms

Jessica R. Schafer; Steven G. Hallett; William G. Johnson

Abstract In previous research conducted on nonweed species, the efficacy of glyphosate was shown to be greater in unsterile soils compared to sterile soils and soil microorganisms were found to play an important role in glyphosate efficacy. Conducting greenhouse studies in microbe-free soil may therefore produce unreliable data, leading to erroneous conclusions. The objective of this study was to determine the effect of soil microorganisms on the response of glyphosate-resistant and -susceptible biotypes of three problematic weeds of the midwestern United States: giant ragweed, horseweed, and common lambsquarters. A greenhouse dose–response study was conducted on each of the three weed species grown in sterile and unsterile field soil, and the dry weight response of roots and shoots was measured. The three weed species responded differently to glyphosate when grown in the sterile and unsterile soil; that is, in the presence and absence of soil microbes. Soil microbes influenced the response of the susceptible and resistant giant ragweed biotypes and the susceptible common lambsquarters, but not the tolerant common lambsquarters or either horseweed biotype. The different responses of the three species to glyphosate in the presence and absence of soil microbes demonstrates that rhizosphere interactions are fundamental to the mode of action of glyphosate. These findings suggest that the range of tolerance to glyphosate observed in weeds and the evolution of resistance in weed biotypes may also be influenced by rhizosphere interactions. The soil media used in dose–response screenings to identify susceptible and resistant weed biotypes is very important. Unsterile field soil should be incorporated into growth media when conducting dose–response screenings to avoid false-positive results. In addition, researchers performing glyphosate dose–response assays should be aware of these findings. Nomenclature: Glyphosate; common lambsquarters, Chenopodium album L. CHEAL; giant ragweed, Ambrosia trifida L. AMBTR; horseweed, Conyza canadensis (L.) Cronq. ERICA.


Weed Technology | 2006

Variable Response of Common Waterhemp (Amaranthus rudis) Populations and Individuals to Glyphosate1

David A. Smith; Steven G. Hallett

Putatively resistant (PR) and putatively susceptible (PS) common waterhemp populations were grown in the greenhouse and sprayed at the three- to four-leaf stage with glyphosate (0.63 kg ae/ha). Surviving plants from PR populations and randomly selected plants from PS populations were clonally propagated and the clones were sprayed with 0.1 to 10.0 kg/ha glyphosate. The glyphosate rates required to reduce growth by 50% (GR50) among the clones were relatively similar, but the concentration required to reduce growth by 90% (GR90) ranged from 1.5 to 16.3 kg/ha. The concentration of glyphosate required to kill 90% of plants (LD90) ranged from 2.3 kg/ha to over 10.0 kg/ ha. This range of responses to glyphosate in common waterhemp clones from different parts of the Midwestern United States indicates a risk of evolution of resistance in common waterhemp populations that are repeatedly selected by applications of glyphosate in the field. Nomenclature: Glyphosate; common waterhemp, Amaranthus rudis Sauer #3 AMATA. Additional index words: Dose response, herbicide resistance, herbicide tolerance. Abbreviations: GR50, the concentration of glyphosate required to reduce dry weights by 50%; GR90, the concentration of glyphosate required to reduce dry weights by 90%; LD90, the concentration of glyphosate required to kill 90% of plants; PR, putatively resistant; PS, putatively susceptible.

Collaboration


Dive into the Steven G. Hallett's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge