Steven G. Milligan
University of Glasgow
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Steven G. Milligan.
Journal of Virology | 2003
Owen Bradley Spiller; Mairi Robinson; Elizabeth O'Donnell; Steven G. Milligan; Bryan Paul Morgan; Andrew J. Davison
ABSTRACT Kaposis sarcoma-associated herpesvirus (KSHV) is associated with three types of human tumor: Kaposis sarcoma, multicentric Castlemans disease, and primary effusion lymphoma. The virus encodes a number of proteins that participate in disrupting the immune response, one of which was predicted by sequence analysis to be encoded by open reading frame 4 (ORF4). The predicted ORF4 protein shares homology with cellular proteins referred to as regulators of complement activation. In the present study, the transcription profile of the ORF4 gene was characterized, revealing that it encodes at least three transcripts, by alternative splicing mechanisms, and three protein isoforms. Functional studies revealed that each ORF4 protein isoform inhibits complement and retains a C-terminal transmembrane domain. Consistent with the complement-regulating activity, we propose to name the proteins encoded by the ORF4 gene collectively as KSHV complement control protein (KCP). KSHV ORF4 is the most complex alternatively spliced gene encoding a viral complement regulator described to date. KCP inhibits the complement component of the innate immune response, thereby possibly contributing to the in vivo persistence and pathogenesis of this virus.
Journal of Virology | 2004
Maria G. McPhillips; Thanaporn Veerapraditsin; Sarah A. Cumming; Dimitra Karali; Steven G. Milligan; Winifred Boner; Iain M. Morgan; Sheila V. Graham
ABSTRACT Pre-mRNA splicing occurs in the spliceosome, which is composed of small ribonucleoprotein particles (snRNPs) and many non-snRNP components. SR proteins, so called because of their C-terminal arginine- and serine-rich domains (RS domains), are essential members of this class. Recruitment of snRNPs to 5′ and 3′ splice sites is mediated and promoted by SR proteins. SR proteins also bridge splicing factors across exons to help to define these units and have a central role in alternative and enhancer-dependent splicing. Here, we show that the SR protein SF2/ASF is part of a complex that forms upon the 79-nucleotide negative regulatory element (NRE) that is thought to be pivotal in posttranscriptional regulation of late gene expression in human papillomavirus type 16 (HPV-16). However, the NRE does not contain any active splice sites, is located in the viral late 3′ untranslated region, and regulates RNA-processing events other than splicing. The level of expression and extent of phosphorylation of SF2/ASF are upregulated with epithelial differentiation, as is subcellular distribution, specifically in HPV-16-infected epithelial cells, and expression levels are controlled, at least in part, by the virus transcription regulator E2.
The Journal of Pathology | 2009
Sarah Mole; Melanie McFarlane; Thanaporn Chuen-Im; Steven G. Milligan; David Millan; Sheila V. Graham
The most prevalent human papillomaviruses (HPVs) causing cervical disease are the ‘high‐risk’ HPV types 16 and 18. All papillomaviruses express a transcription factor, E2, that can regulate viral and cellular gene expression. Recently, we demonstrated high‐risk HPV E2‐mediated transcriptional transactivation of SF2/ASF. This essential oncoprotein is a key member of a family of proteins, the SR proteins, that regulate constitutive and alternative splicing. Tight control of RNA splicing is necessary for the production of wild‐type proteins. So, aberrant expression of SR proteins is involved in the aetiology of a range of human diseases, including cancer. Here we demonstrate epithelial differentiation‐specific control of SF2/ASF in HPV16‐infected keratinocytes in organotypic raft culture and in low‐grade cervical lesions (CIN1). Further, we demonstrate HPV16 infection/differentiation‐induced up‐regulation of a specific subset of SR proteins and present evidence that HPV16 E2 controls expression of SRp20, SC35 and SRp75. Using a series of cell lines that model cervical tumour progression, we show that SF2/ASF, SRp20 and SC35 are specifically up‐regulated in a model of cervical tumour progression. These SR proteins are also over‐expressed in high‐grade cervical lesions, indicating that they may all have oncogenic functions. SR proteins could be useful biomarkers for HPV‐associated disease. Copyright
Journal of Virology | 2009
Sarah Mole; Steven G. Milligan; Sheila V. Graham
ABSTRACT Human papillomavirus (HPV) gene expression is regulated in concert with the epithelial differentiation program. In particular, expression of the virus capsid proteins L1 and L2 is tightly restricted to differentiated epithelial cells. For HPV16, the capsid proteins are encoded by 13 structurally different mRNAs that are produced by extensive alternative splicing. Previously, we demonstrated that upon epithelial differentiation, HPV16 infection upregulates hnRNP A1 and SF2/ASF, both key factors in alternative splicing regulation. Here we cloned a 1-kb region upstream of and including the transcriptional start site of the SF2ASF gene and used it in in vivo transcription assays to demonstrate that the HPV16 E2 transcription factor transactivates the SF2/ASF promoter. The transactivation domain but not the DNA binding domain of the protein is necessary for this. Active E2 association with the promoter was demonstrated using chromatin immunoprecipitation assays. Electrophoretic mobility shift assays indicated that E2 interacted with a region 482 to 684 bp upstream of the transcription initiation site in vitro. This is the first time that HPV16 E2 has been shown to regulate cellular gene expression and the first report of viral regulation of expression of an RNA processing factor. Such E2-mediated control during differentiation of infected epithelial cells may facilitate late capsid protein expression and completion of the virus life cycle.
Journal of Virology | 2001
Alastair Macrae; Bernadette M. Dutia; Steven G. Milligan; David Brownstein; Deborah J. Allen; Jela Mistrikova; Andrew J. Davison; Anthony Nash; James P. Stewart
ABSTRACT Infection of mice by murine gammaherpesvirus 68 (MHV-68) is an excellent small-animal model of gammaherpesvirus pathogenesis in a natural host. We have carried out comparative studies of another herpesvirus, murine herpesvirus 76 (MHV-76), which was isolated at the same time as MHV-68 but from a different murid host, the yellow-necked mouse (Apodemus flavicollis). Molecular analyses revealed that the MHV-76 genome is essentially identical to that of MHV-68, except for deletion of 9,538 bp at the left end of the unique region. MHV-76 is therefore a deletion mutant that lacks four genes unique to MHV-68 (M1, M2,M3, and M4) as well as the eight viral tRNA-like genes. Replication of MHV-76 in cell culture was identical to that of MHV-68. However, following infection of mice, MHV-76 was cleared more rapidly from the lungs. In line with this, there was an increased inflammatory response in lungs with MHV-76. Splenomegaly was also significantly reduced following MHV-76 infection, and much less latent MHV-76 was detected in the spleen. Nevertheless, MHV-76 maintained long-term latency in the lungs and spleen. We utilized a cosmid containing the left end of the MHV-68 genome to reinsert the deleted sequence into MHV-76 by recombination in infected cells, and we isolated a rescuant virus designated MHV-76(cA8+)4 which was ostensibly genetically identical to MHV-68. The growth properties of the rescuant in infected mice were identical to those of MHV-68. These results demonstrate that genetic elements at the left end of the unique region of the MHV-68 genome play vital roles in host evasion and are critical to the development of splenic pathology.
Journal of Virology | 2003
Sarah A. Cumming; Maria G. McPhillips; Thanaporn Veerapraditsin; Steven G. Milligan; Sheila V. Graham
ABSTRACT The human papillomavirus (HPV) life cycle is tightly linked to differentiation of the squamous epithelia that it infects. Capsid proteins, and hence mature virions, are produced in the outermost layer of differentiated cells. As late gene transcripts are produced in the lower layers, posttranscriptional mechanisms likely prevent capsid protein production in less differentiated cells. For HPV type 16 (HPV-16), a 79-nucleotide (nt) negative regulatory element (NRE) inhibits gene expression in basal epithelial cells. To identify key NRE sequences, we carried out transient transfection in basal epithelial cells with reporter constructs containing the HPV-16 late 3′ untranslated region with deletions and mutations of the NRE. Reporter gene expression was increased over 40-fold by deletion of the entire element, 10-fold by deletion of the 5′ portion of the NRE that contains four weak consensus 5′ splice sites, and only 3-fold by deletion of the 3′ GU-rich region. Both portions of the element appear to be necessary for full repression. Inactivating mutations in the 5′ splice sites in the 5′ NRE partially alleviated repression in the context of the 79-nt NRE but caused full derepression when assayed in a construct with the 3′ NRE deleted. All four contribute to the inhibitory effect, though the second splice site is most inhibitory. Sm proteins, U1A and U1 snRNA, but not U1 70K, could be affinity purified with the wild-type NRE but not with the NRE containing mutations in the 5′ splice sites, indicating that a U1 snRNP-like complex forms upon the element.
Frontiers in Microbiology | 2012
Gordon Ramage; Steven G. Milligan; David F. Lappin; Leighann Sherry; Petrina Sweeney; Craig Williams; Jeremy Bagg; Shauna Culshaw
Candida albicans forms oral biofilms that cause disease and are difficult to treat with conventional antifungal agents. Tea tree oil (TTO) is a natural compound with reported antimicrobial and immunomodulatory activities. The aims of the study were to evaluate the antifungal efficacy of TTO and key derivatives against C. albicans biofilms, to assess the toxicological effects of TTO on a clinically relevant oral cell line, and to investigate its impact on inflammation. TTO and its derivatives were examined against 100 clinical strains of C. albicans. Planktonic minimum inhibitory concentrations (MICs) were determined using the CLSI M-27A broth microdilution method. Sessile MICs were determined using an XTT reduction assay. Inhibition, time-kill, and mode of action studies were performed. OKF6-TERT2 epithelial cells were used for cytotoxicity and cytokine expression assays. Planktonic C. albicans isolates were susceptible to TTO, terpinen-4-ol (T-4-ol), and α-terpineol, with an MIC50 of 0.5, 0.25, and 0.25%, respectively. These three compounds also displayed potent activity against the 69 biofilm-forming strains, of which T-4-ol and α-terpineol displayed rapid kill kinetics. For all three compounds, 1 × MIC50 effectively inhibited biofilm growth when C. albicans were treated at 0, 1, and 2 h post adhesion. By scanning electron microscopy analysis and PI uptake, TTO and derivative components were shown to be cell membrane active. TTO and T-4-ol were cytotoxic at 1 × MIC50, whereas at 0.5 × MIC50 T-4-ol displayed no significant toxicity. Transcript and protein analysis showed a reduction of IL-8 when treated with TTO and T-4-ol. These data provide further in vitro evidence that TTO and its derivative components, specifically T-4-ol, exhibit strong antimicrobial properties against fungal biofilms. T-4-ol has safety advantages over the complete essential oil and may be suitable for prophylaxis and treatment of established oropharyngeal candidosis. A clinical trial of T-4-ol is worthy of consideration.
Journal of Virology | 2004
Steven G. Milligan; Mairi Robinson; Elizabeth O'Donnell
ABSTRACT The response of Kaposis sarcoma (KS)-associated herpesvirus (KSHV) to inflammatory cytokine treatment of experimentally infected endothelial cells was investigated. The cytokines inhibited spontaneous KSHV lytic gene expression but not the level of infection. The data suggest that if inflammatory cytokines present in KS lesions contribute to KSHV pathogenesis, they do so in part by promoting latent KSHV infection of the endothelial cells.
Journal of General Virology | 2010
David J. Hughes; Anja Kipar; Steven G. Milligan; Charles Cunningham; Mandy Sanders; Michael A. Quail; Marie-Adele Rajandream; Stacey Efstathiou; Rory Bowden; Claude Chastel; M. Bennett; Jeffery T. Sample; Bart Barrell; Andrew J. Davison; James P. Stewart
Two novel gammaherpesviruses were isolated, one from a field vole (Microtus agrestis) and the other from wood mice (Apodemus sylvaticus). The genome of the latter, designated wood mouse herpesvirus (WMHV), was completely sequenced. WMHV had the same genome structure and predicted gene content as murid herpesvirus 4 (MuHV4; murine gammaherpesvirus 68). Overall nucleotide sequence identity between WMHV and MuHV4 was 85 % and most of the 10 kb region at the left end of the unique region was particularly highly conserved, especially the viral tRNA-like sequences and the coding regions of genes M1 and M4. The partial sequence (71 913 bp) of another gammaherpesvirus, Brest herpesvirus (BRHV), which was isolated ostensibly from a white-toothed shrew (Crocidura russula), was also determined. The BRHV sequence was 99.2 % identical to the corresponding portion of the WMHV genome. Thus, WMHV and BRHV appeared to be strains of a new virus species. Biological characterization of WMHV indicated that it grew with similar kinetics to MuHV4 in cell culture. The pathogenesis of WMHV in wood mice was also extremely similar to that of MuHV4, except for the absence of inducible bronchus-associated lymphoid tissue at day 14 post-infection and a higher load of latently infected cells at 21 days post-infection.
Virology | 2007
Steven G. Milligan; Thanaporn Veerapraditsin; Boolang Ahamet; Sarah Mole; Sheila V. Graham