Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven G. Widen is active.

Publication


Featured researches published by Steven G. Widen.


PLOS Pathogens | 2015

Evolution of Genome Size and Complexity in the Rhabdoviridae

Peter J. Walker; Cadhla Firth; Steven G. Widen; Kim R. Blasdell; Hilda Guzman; Thomas G. Wood; Prasad N. Paradkar; Edward C. Holmes; Robert B. Tesh; Nikos Vasilakis

RNA viruses exhibit substantial structural, ecological and genomic diversity. However, genome size in RNA viruses is likely limited by a high mutation rate, resulting in the evolution of various mechanisms to increase complexity while minimising genome expansion. Here we conduct a large-scale analysis of the genome sequences of 99 animal rhabdoviruses, including 45 genomes which we determined de novo, to identify patterns of genome expansion and the evolution of genome complexity. All but seven of the rhabdoviruses clustered into 17 well-supported monophyletic groups, of which eight corresponded to established genera, seven were assigned as new genera, and two were taxonomically ambiguous. We show that the acquisition and loss of new genes appears to have been a central theme of rhabdovirus evolution, and has been associated with the appearance of alternative, overlapping and consecutive ORFs within the major structural protein genes, and the insertion and loss of additional ORFs in each gene junction in a clade-specific manner. Changes in the lengths of gene junctions accounted for as much as 48.5% of the variation in genome size from the smallest to the largest genome, and the frequency with which new ORFs were observed increased in the 3’ to 5’ direction along the genome. We also identify several new families of accessory genes encoded in these regions, and show that non-canonical expression strategies involving TURBS-like termination-reinitiation, ribosomal frame-shifts and leaky ribosomal scanning appear to be common. We conclude that rhabdoviruses have an unusual capacity for genomic plasticity that may be linked to their discontinuous transcription strategy from the negative-sense single-stranded RNA genome, and propose a model that accounts for the regular occurrence of genome expansion and contraction throughout the evolution of the Rhabdoviridae.


Journal of Virology | 2016

Divergent Viruses Discovered in Arthropods and Vertebrates Revise the Evolutionary History of the Flaviviridae and Related Viruses

Mang Shi; Xian Dan Lin; Nikos Vasilakis; Jun Hua Tian; Ci Xiu Li; Liang Jun Chen; Gillian Eastwood; Xiu Nian Diao; Ming Hui Chen; Xiao Chen; Xin Cheng Qin; Steven G. Widen; Thomas G. Wood; Robert B. Tesh; Jianguo Xu; Edward C. Holmes; Yong-Zhen Zhang

ABSTRACT Viruses of the family Flaviviridae are important pathogens of humans and other animals and are currently classified into four genera. To better understand their diversity, evolutionary history, and genomic flexibility, we used transcriptome sequencing (RNA-seq) to search for the viruses related to the Flaviviridae in a range of potential invertebrate and vertebrate hosts. Accordingly, we recovered the full genomes of five segmented jingmenviruses and 12 distant relatives of the known Flaviviridae (“flavi-like” viruses) from a range of arthropod species. Although these viruses are highly divergent, they share a similar genomic plan and common ancestry with the Flaviviridae in the NS3 and NS5 regions. Remarkably, although these viruses fill in major gaps in the phylogenetic diversity of the Flaviviridae, genomic comparisons reveal important changes in genome structure, genome size, and replication/gene regulation strategy during evolutionary history. In addition, the wide diversity of flavi-like viruses found in invertebrates, as well as their deep phylogenetic positions, suggests that they may represent the ancestral forms from which the vertebrate-infecting viruses evolved. For the vertebrate viruses, we expanded the previously mammal-only pegivirus-hepacivirus group to include a virus from the graceful catshark (Proscyllium habereri), which in turn implies that these viruses possess a larger host range than is currently known. In sum, our data show that the Flaviviridae infect a far wider range of hosts and exhibit greater diversity in genome structure than previously anticipated. IMPORTANCE The family Flaviviridae of RNA viruses contains several notorious human pathogens, including dengue virus, West Nile virus, and hepatitis C virus. To date, however, our understanding of the biodiversity and evolution of the Flaviviridae has largely been directed toward vertebrate hosts and their blood-feeding arthropod vectors. Therefore, we investigated an expanded group of potential arthropod and vertebrate host species that have generally been ignored by surveillance programs. Remarkably, these species contained diverse flaviviruses and related viruses that are characterized by major changes in genome size and genome structure, such that these traits are more flexible than previously thought. More generally, these data suggest that arthropods may be the ultimate reservoir of the Flaviviridae and related viruses, harboring considerable genetic and phenotypic diversity. In sum, this study revises the traditional view on the evolutionary history, host range, and genomic structures of a major group of RNA viruses.


Molecular Immunology | 1994

Expression and purification of biologically active domain I of the human polymeric immunoglobulin receptor

Mary Ann Bakos; Steven G. Widen; Randall M. Goldblum

Previous studies using proteolytic fragments and synthetic peptides have indicated that domain I of human polymeric immunoglobulin receptor (PIgR) is necessary for ligand binding. The expression in E. coli, and subsequent IgM-affinity purification of domain I of human PIgR is described. The recombinant domain I protein (rDI) was similar in structure to native SC domain I in that it bound specifically to MAb 6G11, an antibody which recognizes a critical portion of the PIg binding site in domain I. The biological activity of rDI was indicated by high affinity binding to PIgA (Kd = 1.6 x 10(-7) M) and IgM (Kd = 5.1 x 10(-7) M). Domain I of human SC is therefore sufficient for binding to PIg.


The Journal of Infectious Diseases | 2014

Comparison of the Live Attenuated Yellow Fever Vaccine 17D-204 Strain to Its Virulent Parental Strain Asibi by Deep Sequencing

Andrew S. Beck; Robert B. Tesh; Thomas G. Wood; Steven G. Widen; Kate D. Ryman; Alan D. T. Barrett

BACKGROUND The first comparison of a live RNA viral vaccine strain to its wild-type parental strain by deep sequencing is presented using as a model the yellow fever virus (YFV) live vaccine strain 17D-204 and its wild-type parental strain, Asibi. METHODS The YFV 17D-204 vaccine genome was compared to that of the parental strain Asibi by massively parallel methods. Variability was compared on multiple scales of the viral genomes. A modeled exploration of small-frequency variants was performed to reconstruct plausible regions of mutational plasticity. RESULTS Overt quasispecies diversity is a feature of the parental strain, whereas the live vaccine strain lacks diversity according to multiple independent measurements. A lack of attenuating mutations in the Asibi population relative to that of 17D-204 was observed, demonstrating that the vaccine strain was derived by discrete mutation of Asibi and not by selection of genomes in the wild-type population. CONCLUSIONS Relative quasispecies structure is a plausible correlate of attenuation for live viral vaccines. Analyses such as these of attenuated viruses improve our understanding of the molecular basis of vaccine attenuation and provide critical information on the stability of live vaccines and the risk of reversion to virulence.


Molecular & Cellular Proteomics | 2011

Quantification of Activated NF-κB/RelA Complexes Using ssDNA Aptamer Affinity – Stable Isotope Dilution—Selected Reaction Monitoring—Mass Spectrometry

Yingxin Zhao; Steven G. Widen; Mohammad Jamaluddin; Bing Tian; Thomas G. Wood; Chukwudi B. Edeh; Allan R. Brasier

Nuclear Factor-κB (NF-κB) is a family of inducible transcription factors regulated by stimulus-induced protein interactions. In the cytoplasm, the NF-κB member RelA transactivator is inactivated by binding inhibitory IκBs, whereas in its activated state, the serine-phosphorylated protein binds the p300 histone acetyltransferase. Here we describe the isolation of a ssDNA aptamer (termed P028F4) that binds to the activated (IκBα-dissociated) form of RelA with a KD of 6.4 × 10−10, and its application in an enrichment-mass spectrometric quantification assay. ssDNA P028F4 competes with cognate duplex high affinity NF-κB binding sites for RelA binding in vitro, binds activated RelA in eukaryotic nuclei and reduces TNFα-stimulated endogenous NF-κB dependent gene expression. Incorporation of P028F4 as an affinity isolation step enriches for serine 536 phosphorylated and p300 coactivator complexed RelA, simultaneously depleting IκBα·RelA complexes. A stable isotope dilution (SID)-selected reaction monitoring (SRM)- mass spectrometry (MS) assay for RelA was developed that produced a linear response over 1,000 fold dilution range of input protein and had a 200 amol lower limit of quantification. This multiplex SID-SRM-MS RelA assay was used to quantify activated endogenous RelA in cytokine-stimulated eukaryotic cells isolated by single-step P028F4 enrichment. The aptamer-SID-SRM-MS assay quantified the fraction of activated RelA in subcellular extracts, detecting the presence of a cytoplasmic RelA reservoir unresponsive to TNFα stimulation. We conclude that aptamer-SID-SRM-MS is a versatile tool for quantification of activated NF-κB/RelA and its associated complexes in response to pathway activation.


Journal of Virology | 2015

Different Temporal Effects of Ebola Virus VP35 and VP24 Proteins on Global Gene Expression in Human Dendritic Cells

Philipp A. Ilinykh; Ndongala Michel Lubaki; Steven G. Widen; Lynnsey A. Renn; Terence C. Theisen; Ronald L. Rabin; Thomas G. Wood; Alexander Bukreyev

ABSTRACT Ebola virus (EBOV) causes a severe hemorrhagic fever with a deficient immune response, lymphopenia, and lymphocyte apoptosis. Dendritic cells (DC), which trigger the adaptive response, do not mature despite EBOV infection. We recently demonstrated that DC maturation is unblocked by disabling the innate response antagonizing domains (IRADs) in EBOV VP35 and VP24 by the mutations R312A and K142A, respectively. Here we analyzed the effects of VP35 and VP24 with the IRADs disabled on global gene expression in human DC. Human monocyte-derived DC were infected by wild-type (wt) EBOV or EBOVs carrying the mutation in VP35 (EBOV/VP35m), VP24 (EBOV/VP24m), or both (EBOV/VP35m/VP24m). Global gene expression at 8 and 24 h was analyzed by deep sequencing, and the expression of interferon (IFN) subtypes up to 5 days postinfection was analyzed by quantitative reverse transcription-PCR (qRT-PCR). wt EBOV induced a weak global gene expression response, including markers of DC maturation, cytokines, chemokines, chemokine receptors, and multiple IFNs. The VP35 mutation unblocked the expression, resulting in a dramatic increase in expression of these transcripts at 8 and 24 h. Surprisingly, DC infected with EBOV/VP24m expressed lower levels of many of these transcripts at 8 h after infection, compared to wt EBOV. In contrast, at 24 h, expression of the transcripts increased in DC infected with any of the three mutants, compared to wt EBOV. Moreover, sets of genes affected by the two mutations only partially overlapped. Pathway analysis demonstrated that the VP35 mutation unblocked pathways involved in antigen processing and presentation and IFN signaling. These data suggest that EBOV IRADs have profound effects on the host adaptive immune response through massive transcriptional downregulation of DC. IMPORTANCE This study shows that infection of DC with EBOV, but not its mutant forms with the VP35 IRAD and/or VP24 IRAD disabled, causes a global block in expression of host genes. The temporal effects of mutations disrupting the two IRADs differ, and the lists of affected genes only partially overlap such that VP35 and VP24 IRADs each have profound effects on antigen presentation by exposed DC. The global modulation of DC gene expression and the resulting lack of their maturation represent a major mechanism by which EBOV disables the T cell response and suggests that these suppressive pathways are a therapeutic target that may unleash the T cell responses during EBOV infection.


Virology | 2013

First isolation of Aedes flavivirus in the Western Hemisphere and evidence of vertical transmission in the mosquito Aedes (Stegomyia) albopictus (Diptera: Culicidae)

Andrew D. Haddow; Hilda Guzman; Vsevolod L. Popov; Thomas G. Wood; Steven G. Widen; Alastair D. Haddow; Robert B. Tesh; Scott C. Weaver

We report here the first evidence of vertical transmission of Aedes flavivirus (AEFV) and its first isolation in the Western Hemisphere. AEFV strain SPFLD-MO-2011-MP6 was isolated in C6/36 cells from a pool of male Aedes albopictus mosquitoes that were reared to adults from larvae collected in southwest Missouri, USA, in 2011. Electron micrographs of the virus showed virions of approximately 45nm in diameter with morphological characteristics associated with flaviviruses. The genomic sequence demonstrated that AEFV-SPFLD-MO-2011-MP6 shares a high degree of nucleotide and amino acid sequence identity with the AEFV Narita-21 strain, isolated in Japan in 2003. Intracerebral inoculation of newborn mice with the virus failed to produce observable illness or death and the virus did not replicate in vertebrate cells, consistent with a lack of vertebrate host range.


Stem cell reports | 2017

Differential Responses of Human Fetal Brain Neural Stem Cells to Zika Virus Infection

Erica L. McGrath; Shannan L. Rossi; Steven G. Widen; Auston Cody Grant; Tiffany J. Dunn; Sasha R. Azar; Christopher M. Roundy; Ying Xiong; Deborah Prusak; Bradford D. Loucas; Thomas G. Wood; Yongjia Yu; Ildefonso Fernández-Salas; Scott C. Weaver; Nikos Vasilakis; Ping Wu

Summary Zika virus (ZIKV) infection causes microcephaly in a subset of infants born to infected pregnant mothers. It is unknown whether human individual differences contribute to differential susceptibility of ZIKV-related neuropathology. Here, we use an Asian-lineage ZIKV strain, isolated from the 2015 Mexican outbreak (Mex1-7), to infect primary human neural stem cells (hNSCs) originally derived from three individual fetal brains. All three strains of hNSCs exhibited similar rates of Mex1-7 infection and reduced proliferation. However, Mex1-7 decreased neuronal differentiation in only two of the three stem cell strains. Correspondingly, ZIKA-mediated transcriptome alterations were similar in these two strains but significantly different from that of the third strain with no ZIKV-induced neuronal reduction. This study thus confirms that an Asian-lineage ZIKV strain infects primary hNSCs and demonstrates a cell-strain-dependent response of hNSCs to ZIKV infection.


BMC Genomics | 2015

Analysis of the TGFβ-induced program in primary airway epithelial cells shows essential role of NF-κB/RelA signaling network in type II epithelial mesenchymal transition

Bing Tian; Xueling Li; Mridul Kalita; Steven G. Widen; Jun Jun Yang; Suresh K. Bhavnani; Bryant Dang; Andrzej Kudlicki; Mala Sinha; Fanping Kong; Thomas G. Wood; Bruce A. Luxon; Allan R. Brasier

BackgroundThe airway epithelial cell plays a central role in coordinating the pulmonary response to injury and inflammation. Here, transforming growth factor-β (TGFβ) activates gene expression programs to induce stem cell-like properties, inhibit expression of differentiated epithelial adhesion proteins and express mesenchymal contractile proteins. This process is known as epithelial mesenchymal transition (EMT); although much is known about the role of EMT in cellular metastasis in an oncogene-transformed cell, less is known about Type II EMT, that occurring in normal epithelial cells. In this study, we applied next generation sequencing (RNA-Seq) in primary human airway epithelial cells to understand the gene program controlling Type II EMT and how cytokine-induced inflammation modifies it.ResultsGeneralized linear modeling was performed on a two-factor RNA-Seq experiment of 6 treatments of telomerase immortalized human small airway epithelial cells (3 replicates). Using a stringent cut-off, we identified 3,478 differentially expressed genes (DEGs) in response to EMT. Unbiased transcription factor enrichment analysis identified three clusters of EMT regulators, one including SMADs/TP63 and another NF-κB/RelA. Surprisingly, we also observed 527 of the EMT DEGs were also regulated by the TNF-NF-κB/RelA pathway. This Type II EMT program was compared to Type III EMT in TGFβ stimulated A549 alveolar lung cancer cells, revealing significant functional differences. Moreover, we observe that Type II EMT modifies the outcome of the TNF program, reducing IFN signaling and enhancing integrin signaling. We confirmed experimentally that TGFβ-induced the NF-κB/RelA pathway by observing a 2-fold change in NF-κB/RelA nuclear translocation. A small molecule IKK inhibitor blocked TGFβ-induced core transcription factor (SNAIL1, ZEB1 and Twist1) and mesenchymal gene (FN1 and VIM) expression.ConclusionsThese data indicate that NF-κB/RelA controls a SMAD-independent gene network whose regulation is required for initiation of Type II EMT. Type II EMT dramatically affects the induction and kinetics of TNF-dependent gene networks.


Free Radical Biology and Medicine | 2015

Whole transcriptome analysis reveals an 8-oxoguanine DNA glycosylase-1-driven DNA repair-dependent gene expression linked to essential biological processes.

Leopoldo Aguilera-Aguirre; Koa Hosoki; Attila Bacsi; Zsolt Radak; Thomas G. Wood; Steven G. Widen; Sanjiv Sur; Bill T. Ameredes; Alfredo Saavedra-Molina; Allan R. Brasier; Xueqing Ba; Istvan Boldogh

Reactive oxygen species inflict oxidative modifications on various biological molecules, including DNA. One of the most abundant DNA base lesions, 8-oxo-7,8-dihydroguanine (8-oxoG) is repaired by 8-oxoguanine DNA glycosylase-1 (OGG1) during DNA base excision repair (OGG1-BER). 8-OxoG accumulation in DNA has been associated with various pathological and aging processes, although its role is unclear. The lack of OGG1-BER in Ogg1(-/-) mice resulted in decreased inflammatory responses and increased susceptibility to infections and metabolic disorders. Therefore, we proposed that OGG1 and/or 8-oxoG base may have a role in immune and homeostatic processes. To test our hypothesis, we challenged mouse lungs with OGG1-BER product 8-oxoG base and changes in gene expression were determined by RNA sequencing and data were analyzed by Gene Ontology and statistical tools. RNA-Seq analysis identified 1592 differentially expressed (≥ 3-fold change) transcripts. The upregulated mRNAs were related to biological processes, including homeostatic, immune-system, macrophage activation, regulation of liquid-surface tension, and response to stimulus. These processes were mediated by chemokines, cytokines, gonadotropin-releasing hormone receptor, integrin, and interleukin signaling pathways. Taken together, these findings point to a new paradigm showing that OGG1-BER plays a role in various biological processes that may benefit the host, but when in excess could be implicated in disease and/or aging processes.

Collaboration


Dive into the Steven G. Widen's collaboration.

Top Co-Authors

Avatar

Thomas G. Wood

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Nikos Vasilakis

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hilda Guzman

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Vsevolod L. Popov

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott C. Weaver

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albert J. Auguste

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Samuel H. Wilson

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge