Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven G. Wise is active.

Publication


Featured researches published by Steven G. Wise.


Biomaterials | 2011

Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering

Jelena Rnjak-Kovacina; Steven G. Wise; Zhe Li; Peter K.M. Maitz; Cara J. Young; Yiwei Wang; Anthony S. Weiss

We obtained low and high porosity synthetic human elastin scaffolds by adapting low (1 mL/h) and high (3 mL/h) flow rates respectively during electrospinning. Physical, mechanical and biological properties of these scaffolds were screened to identify the best candidates for the bioengineering of dermal tissue. SHE scaffolds that were electrospun at the higher flow rate presented increased fiber diameter and greater average pore size and over doubling of overall scaffold porosity. Both types of scaffold displayed Youngs moduli comparable to that of native elastin, but the high porosity scaffolds possessed higher tensile strength. Low and high porosity scaffolds supported early attachment, spreading and proliferation of primary dermal fibroblasts, but only high porosity scaffolds supported active cell migration and infiltration into the scaffold. High porosity SHE scaffolds promoted cell persistence and scaffold remodeling in vitro with only moderate scaffold contraction. The scaffolds persisted for at least 6 weeks in a mouse subcutaneous implantation study with fibroblasts on the exterior and infiltrating, evidence of scaffold remodeling including de novo collagen synthesis and early stage angiogenesis.


Acta Biomaterialia | 2011

A multilayered synthetic human elastin/polycaprolactone hybrid vascular graft with tailored mechanical properties.

Steven G. Wise; Michael J. Byrom; Anna Waterhouse; Paul G. Bannon; M. Ng; Anthony S. Weiss

Small-diameter synthetic vascular graft materials fail to match the patency of human tissue conduits used in vascular bypass surgery. The foreign surface retards endothelialization and is highly thrombogenic, while the mismatch in mechanical properties induces intimal hyperplasia. Using recombinant human tropoelastin, we have developed a synthetic vascular conduit for small-diameter applications. We show that tropoelastin enhances endothelial cell attachment (threefold vs. control) and proliferation by 54.7 ± 1.1% (3 days vs. control). Tropoelastin, when presented as a monomer and when cross-linked into synthetic elastin for biomaterials applications, had low thrombogenicity. Activation of the intrinsic pathway of coagulation, measured by plasma clotting time, was reduced for tropoelastin (60.4 ± 8.2% vs. control). Platelet attachment was also reduced compared to collagen. Reductions in platelet interactions were mirrored on cross-linked synthetic elastin scaffolds. Tropoelastin was subsequently incorporated into a synthetic elastin/polycaprolactone conduit with mechanical properties optimized to mimic the human internal mammary artery, including permeability, compliance, elastic modulus and burst pressure. Further, this multilayered conduit presented a synthetic elastin internal lamina to circulating blood and demonstrated suturability and mechanical durability in a small scale rabbit carotid interposition model.


Biomaterials | 2009

Covalent immobilisation of tropoelastin on a plasma deposited interface for enhancement of endothelialisation on metal surfaces

Yongbai Yin; Steven G. Wise; Neil J. Nosworthy; Anna Waterhouse; Daniel V. Bax; Hani Youssef; Michael J. Byrom; M.M.M. Bilek; David R. McKenzie; Anthony S. Weiss; M. Ng

Currently available endovascular metallic implants such as stents exhibit suboptimal biocompatibility in that they re-endothelialise poorly leaving them susceptible to thrombosis. To improve the interaction of these implants with endothelial cells we developed a surface coating technology, enabling the covalent attachment of biomolecules to previously inert metal surfaces. Using horseradish peroxidase as a probe, we demonstrate that the polymerised surface can retain the presentation and activity of an immobilised protein. We further demonstrated the attachment of tropoelastin, an extracellular matrix protein critical to the correct arrangement and function of vasculature. Not only it is structurally important, but it plays a major role in supporting endothelial cell growth, while modulating smooth muscle cell infiltration. Tropoelastin was shown to bind to the surface in a covalent monolayer, supplemented with additional physisorbed multilayers on extended incubation. The physisorbed tropoelastin layers can be washed away in buffer or SDS while the first layer of tropoelastin remains tightly bound. The plasma coated stainless steel surface with immobilised tropoelastin was subsequently found to have improved biocompatibility by promoting endothelial cell attachment and proliferation relative to uncoated stainless steel controls. Tropoelastin coatings applied to otherwise inert substrates using this technology could thus have broad applications to a range of non-polymeric vascular devices.


Biomaterials | 2010

The immobilization of recombinant human tropoelastin on metals using a plasma-activated coating to improve the biocompatibility of coronary stents

Anna Waterhouse; Yongbai Yin; Steven G. Wise; Daniel V. Bax; David R. McKenzie; M.M.M. Bilek; Anthony S. Weiss; M. Ng

Current endovascular stents have sub-optimal biocompatibility reducing their clinical efficacy. We previously demonstrated a plasma-activated coating (PAC) that covalently bound recombinant human tropoelastin (TE), a major regulator of vascular cells in vivo, to enhance endothelial cell interactions. We sought to develop this coating to enhance its mechanical properties and hemocompatibility for application onto coronary stents. The plasma vapor composition was altered by incorporating argon, nitrogen, hydrogen or oxygen to modulate coating properties. Coatings were characterized for 1) surface properties, 2) mechanical durability, 3) covalent protein binding, 4) endothelial cell interactions and 5) thrombogenicity. The N(2)/Ar PAC had optimal mechanical properties and did not delaminate after stent expansion. The N(2)/Ar PAC was mildly hydrophilic and covalently bound the highest proportion of TE, which enhanced endothelial cell proliferation. Acute thrombogenicity was assessed in a modified Chandler loop using human blood. Strikingly, the N(2)/Ar PAC alone reduced thrombus weight by ten-fold compared to 316L SS, a finding unaltered with immobilized TE. Serum soluble P-selectin was reduced on N(2)/Ar PAC and N(2)/Ar PAC + TE (p < 0.05), consistent with reduced platelet activation. We have demonstrated a coating for metal alloys with multifaceted biocompatibility that resists delamination and is non-thrombogenic, with implications for improving coronary stent efficacy.


Acta Biomaterialia | 2012

Electrospun synthetic human elastin:collagen composite scaffolds for dermal tissue engineering

Jelena Rnjak-Kovacina; Steven G. Wise; Zhe Li; Peter K.M. Maitz; Cara J. Young; Yiwei Wang; Anthony S. Weiss

We present an electrospun synthetic human elastin:collagen composite scaffold aimed at dermal tissue engineering. The panel of electrospun human tropoelastin and ovine type I collagen blends comprised 80% tropoelastin+20% collagen, 60% tropoelastin+40% collagen and 50% tropoelastin+50% collagen. Electrospinning efficiency decreased with increasing collagen content under the conditions used. Physical and mechanical characterization encompassed fiber morphology, porosity, pore size and modulus, which were prioritized to identify the optimal candidate for dermal tissue regeneration. Scaffolds containing 80% tropoelastin and 20% collagen (80T20C) were selected on this basis for further cell interaction and animal implantation studies. 80T20C enhanced proliferation and migration rates of dermal fibroblasts in vitro and were well tolerated in a mouse subcutaneous implantation study where they persisted over 6 weeks. The 80T20C scaffolds supported fibroblast infiltration, de novo collagen deposition and new capillary formation.


Biomaterials | 2009

Primary human dermal fibroblast interactions with open weave three-dimensional scaffolds prepared from synthetic human elastin

Jelena Rnjak; Zhe Li; Peter K.M. Maitz; Steven G. Wise; Anthony S. Weiss

We present an elastic, fibrous human protein-based and cell-interactive dermal substitute scaffold based on synthetic human elastin. Recombinant human tropoelastin promoted primary human dermal fibroblast attachment, spreading and proliferation. Tropoelastin was cross-linked to form a synthetic elastin (SE) hydrogel matrix and electrospun into fibrous SE scaffolds. Fibroblasts attached to and proliferated across SE hydrogel scaffold surfaces for at least 14 days and deposited the extracellular matrix proteins fibronectin and collagen type I. To allow for the benefit of greater cell infiltration, SE was electrospun into open weave, fibrous scaffolds that closely mimic the fibrous nature of the skin dermis. 3D SE scaffolds were robust and consisted of flat, ribbon-like fibers with widths that are similar to native dermal elastic fibers. The scaffolds displayed elasticity close to that of natural elastin. 3D SE retained the ability to interact with primary human dermal fibroblasts, which consistently attached and proliferated to form monolayers spanning the entire scaffold surface. The open weave design, with larger spaces between individual fibers and greater fiber diameters beneficially allowed for substantial cell infiltration throughout the scaffolds.


Advances in Protein Chemistry | 2009

Engineered Tropoelastin and Elastin-Based Biomaterials

Steven G. Wise; Suzanne M. Mithieux; Anthony S. Weiss

Elastin is a key mammalian extracellular matrix protein that is critical to the elasticity, compliance, and resilience of a range of tissues including the vasculature, skin, and lung. In addition to providing mechanical integrity to tissues, elastin also has critical functions in the regulation of cell behavior and may help to modulate the coagulation cascade. The high insolubility of elastin has limited its use to researchers, while soluble derivatives of elastin including elastin peptides, digested elastins, and tropoelastin have much broader applications. Recombinantly produced tropoelastin, the soluble monomer of elastin, has been shown to exhibit many of the properties intrinsic to the mature biopolymer. As such, recombinant human tropoelastin provides a versatile building block for the manufacture of biomaterials with potential for diverse applications in elastic tissues. One of the major benefits of soluble elastins is that they can be engineered into a range of physical forms. As a dominant example, soluble elastins including tropoelastin can form hydrogels when they are chemically cross-linked. These self-organized constructs swell when transferred from a saline to aqueous environment and are highly elastic; these tunable responses are dependent on the types of cross-linker and elastin used. Soluble elastins can also be drawn into fine fibers using electrospinning. The morphology of these fibers can be altered by modifying spinning parameters that include delivery flow rate and the starting protein concentration. The resulting fibers then accumulate to form porous scaffolds, and can be wound around mandrils to create conduits for vascular applications. Electrospun scaffolds retain the elasticity and cell-interactive properties inherent in the tropoelastin precursor. Additionally, soluble elastins serve as versatile biomaterial coatings, enhancing cellular interactions and modulating the blood compatibility of polymer- and metal-based prostheses. Soluble elastins, and in particular tropoelastin, have highly favorable intrinsic physical and cell-interactive properties, warranting their adaption through incorporation into biomaterials and modification of implantable devices. The multiple choices of ways to produce elastin-based biomaterials mean that they are well suited to the tailoring of elastic biomaterials and hybrid constructs.


Birth Defects Research Part C-embryo Today-reviews | 2012

Elastin signaling in wound repair

Jessica F. Almine; Steven G. Wise; Anthony S. Weiss

Skin is an important organ to the human body as it functions as an interface between the body and environment. Cutaneous injury elicits a complex wound healing process, which is an orchestration of cells, matrix components, and signaling factors that re-establishes the barrier function of skin. In adults, an unavoidable consequence of wound healing is scar formation. However, in early fetal development, wound healing is scarless. This phenomenon is characterized by an attenuated inflammatory response, differential expression of signaling factors, and regeneration of normal skin architecture. Elastin endows a range of mechanical and cell interactive properties to skin. In adult wound healing, elastin is severely lacking and only a disorganized elastic fiber network is present after scar formation. The inherent properties of elastin make it a desirable inclusion to adult wound healing. Elastin imparts recoil and resistance and induces a range of cell activities, including cell migration and proliferation, matrix synthesis, and protease production. The effects of elastin align with the hallmarks of fetal scarless wound healing. Elastin synthesis is substantial in late stage in utero and drops to a trickle in adults. The physical and cell signaling advantages of elastin in a wound healing context creates a parallel with the innate features of fetal skin that can allow for scarless healing.


Acta Biomaterialia | 2014

Tropoelastin - a versatile, bioactive assembly module

Steven G. Wise; Giselle C. Yeo; Matti A. Hiob; Jelena Rnjak-Kovacina; David L. Kaplan; M. Ng; Anthony S. Weiss

Elastin provides structural integrity, biological cues and persistent elasticity to a range of important tissues, including the vasculature and lungs. Its critical importance to normal physiology makes it a desirable component of biomaterials that seek to repair or replace these tissues. The recent availability of large quantities of the highly purified elastin monomer, tropoelastin, has allowed for a thorough characterization of the mechanical and biological mechanisms underpinning the benefits of mature elastin. While tropoelastin is a flexible molecule, a combination of optical and structural analyses has defined key regions of the molecule that directly contribute to the elastomeric properties and control the cell interactions of the protein. Insights into the structure and behavior of tropoelastin have translated into increasingly sophisticated elastin-like biomaterials, evolving from classically manufactured hydrogels and fibers to new forms, stabilized in the absence of incorporated cross-linkers. Tropoelastin is also compatible with synthetic and natural co-polymers, expanding the applications of its potential use beyond traditional elastin-rich tissues and facilitating finer control of biomaterial properties and the design of next-generation tailored bioactive materials.


Advanced Drug Delivery Reviews | 2013

Tropoelastin--a multifaceted naturally smart material.

Suzanne M. Mithieux; Steven G. Wise; Anthony S. Weiss

Tropoelastin dominates the physical performance of human elastic tissue as it is assembled to make elastin. Tropoelastin is increasingly appreciated as a protein monomer with a defined solution shape comprising modular, bridged regions that specialize in elasticity and cell attachment, which collectively participate in macromolecular assembly. This modular, multifaceted molecule is being exploited to enhance the physical performance and biological presentation of engineered constructs to augment and repair human tissues. These tissues include skin and vasculature, and emphasize how growing knowledge of tropoelastin can be powerfully adapted to add value to pre-existing devices like stents and novel, multi-featured biological implants.

Collaboration


Dive into the Steven G. Wise's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Ng

Royal Prince Alfred Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juichien Hung

The Heart Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elysse Filipe

The Heart Research Institute

View shared research outputs
Top Co-Authors

Avatar

Michael J. Byrom

Royal Prince Alfred Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge