Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven Goldstein is active.

Publication


Featured researches published by Steven Goldstein.


The Annals of Thoracic Surgery | 2001

Decellularized human valve allografts.

Ronald C. Elkins; Patti E. Dawson; Steven Goldstein; Steven P. Walsh; Kirby S. Black

BACKGROUND Variable performance of allograft tissues in children and some adults may be linked to an immune response and could be mitigated by reducing implant antigenicity. METHODS As endothelial and fibroblast cells are the likely source of valve antigenicity, human (CryoValve SG) and sheep pulmonary valves were decellularized using the SynerGraft treatment process. Treated valves were evaluated in vitro using histochemical, biomechanical, and hydrodynamic methods, and compared with standard cryopreserved valves. Four SynerGraft-treated and two cryopreserved sheep pulmonary valves were implanted as root replacements in the right ventricular outflow tract of growing sheep and monitored echocardiographically and histologically at 3 and 6 months. CryoValve SG human pulmonary valves were implanted in 36 patients. RESULTS SynerGraft treatment reduced tissue antigen expression but did not alter human valve biomechanics or strength. Decellularized sheep allograft valves were functional during the implantation period, and, they became progressively recellularized with recipient cells. In humans, CryoValve SG pulmonary valves did not provoke a panel reactive antibody response. CONCLUSIONS SynerGraft decellularization leaves the physical properties of valves unaltered and substantially diminishes antigen content. Reduction in implant cellularity enables host recellularization of the matrix, which should favorably impact long-term graft durability.


The Annals of Thoracic Surgery | 2000

Transpecies heart valve transplant: advanced studies of a bioengineered xeno-autograft

Steven Goldstein; David R. Clarke; Steven P. Walsh; Kirby S. Black; Mark F O’Brien

BACKGROUND Tissue engineering approaches utilizing biomechanically suitable cell-conductive matrixes should extend xenograft heart valve performance, durability, and growth potential to an extent presently attained only by the pulmonary autograft. To test this hypothesis, we developed an acellular, unfixed porcine aortic valve-based construct. The performance of this valve has been evaluated in vitro under simulated aortic conditions, as a pulmonary valve replacement in sheep, and in aortic and pulmonary valve replacement in humans. METHODS SynerGraft porcine heart valves (CryoLife Inc, Kennesaw, GA) were constructed from porcine noncoronary aortic valve cusp units consisting of aorta, noncoronary aortic leaflet, and attached anterior mitral leaflet (AML). After treatment to remove all histologically demonstrable leaflet cells and substantially reduce porcine cell-related immunoreactivity, three valve cusps were matched and sewn to form a symmetrical root utilizing the AML remnants as the inflow conduit. SynerGraft valves were evaluated by in vitro hydrodynamics, and by in vivo implants in the right ventricular outflow tract of weanling sheep for up to 336 days. Cryopreserved allograft valves served as control valves in both in vitro and in vivo evaluations. Valves were also implanted as aortic valve replacements in humans. RESULTS In vitro pulsatile flow testing of the SynerGraft porcine valves demonstrated excellent valve function with large effective orifice areas and low gradients equivalent to a normal human aortic valve. Implants in sheep right ventricular outflow tracts showed stable leaflets with up to 80% of matrix recellularization with host fibroblasts and/or myofibroblasts, and with no leaflet calcification over 150 days, and minimal deposition at 336 days. Echocardiography studies showed normal hemodynamic performance during the implantation period. The human implants have proven functional for over 9 months. CONCLUSIONS A unique heart valve construct has been engineered to achieve the equivalent of an autograft. Short-term durability of these novel implants demonstrates for the first time the possibility of an engineered autograft.


Cryobiology | 2009

Retained structural integrity of collagen and elastin within cryopreserved human heart valve tissue as detected by two-photon laser scanning confocal microscopy ☆

Cindy J. Gerson; Steven Goldstein; Albert E. Heacox

Cryopreservation is commonly used for the long-term storage of heart valve allografts. Despite the excellent hemodynamic performance and durability of cryopreserved allografts, reports have questioned whether cryopreservation affects the valvular structural proteins, collagen and elastin. This study uses two-photon laser scanning confocal microscopy (LSCM) to evaluate the effect of cryopreservation on collagen and elastin integrity within the leaflet and conduit of aortic and pulmonary human heart valves. To permit pairwise comparisons of fresh and cryopreserved tissue, test valves were bisected longitudinally with one segment imaged fresh and the other imaged after cryopreservation and brief storage in liquid nitrogen. Collagen was detected by second harmonic generation (SHG) stimulation and elastin by autofluorescence excitation. Qualitative analysis of all resultant images indicated the maintenance of collagen and elastin structure within leaflet and conduit post-cryopreservation. Analysis of the optimized percent laser transmission (OPLT) required for full dynamic range imaging of collagen and elastin showed that OPLT observations were highly variable among both fresh and cryopreserved samples. Changes in donor-specific average OPLT in response to cryopreservation exhibited no consistent directional trend. The donor-aggregated results predominantly showed no statistically significant change in collagen and elastin average OPLT due to cryopreservation. Since OPLT has an inverse relationship with structural signal intensity, these results indicate that there was largely no statistical difference in collagen and elastin signal strength between fresh and cryopreserved tissue. Overall, this study indicates that the conventional cryopreservation of human heart valve allografts does not detrimentally affect their collagen and elastin structural integrity.


Cryobiology | 2012

Structural integrity of collagen and elastin in SynerGraft® decellularized-cryopreserved human heart valves.

Cindy J. Gerson; Ronald C. Elkins; Steven Goldstein; Albert E. Heacox

SynerGraft® (SG) decellularized-cryopreserved cardiac valve allografts have been developed to provide a valve replacement option that has reduced antigenicity, retained structural integrity, and the ability to be stored long-term until needed for implantation. However, it is critical to ensure that both the SG processing and cryopreservation of these allografts do not detrimentally affect the extracellular matrix architecture within the tissue. This study evaluates the effects of SG decellularization and subsequent cryopreservation on the extracellular matrix integrity of allograft heart valves. Human aortic and pulmonary valves were trisected, with one-third of each either left fresh (no further processing after dissection), decellularized, or decellularized and cryopreserved. Two-photon laser scanning confocal microscopy was used to visualize collagen and elastin in leaflets and conduits. The optimized percent laser transmission (OPLT) required for full dynamic range imaging of each site was determined, and changes in OPLT were used to infer changes in collagen and elastin signal intensity. Collagen fiber crimp period and collagen and elastin fiber diameter were measured in leaflet tissue. Statistically significant differences in OPLT and the dimensional characteristics of collagen and elastin in study groups were determined through single factor ANOVA. The majority of donor-aggregated average OPLT observations showed no statistically significant differences among all groups, indicating no difference in collagen or elastin signal strength. Morphometric analysis of collagen and elastin fibers revealed no significant alterations in treated leaflet tissues relative to fresh tissues. Collagen and elastin structural integrity within allograft heart valves are maintained through SynerGraft® decellularization and subsequent cryopreservation.


Journal of Surgical Research | 2012

Impact of γ-Irradiation on Extracellular Matrix of Porcine Pulmonary Valves

Padmini Sarathchandra; Ryszard T. Smolenski; Ada H.Y. Yuen; Adrian H. Chester; Steven Goldstein; Albert E. Heacox; Magdi H. Yacoub; Patricia M. Taylor

BACKGROUND The extracellular matrix plays an important role in heart valve function. To improve the processing of porcine pulmonary valves for clinical use, we have studied the influence of cryopreservation, decellularization, and irradiation on extracellular matrix components. METHODS Decellularization was carried out followed by DNAseI/RNAseA digestion and isotonic washout. Valves were cryopreserved in 10% DMSO/10% fetal bovine serum, and then subjected to 25-40 kGy γ-radiation. Extracellular matrix constituents were evaluated by histologic staining, immunohistochemistry, transmission electron microscopy, and liquid chromatography/mass spectrometry. RESULTS Histologic, immunohistochemical, ultrastructural, and biochemical analyses demonstrated a marked reduction in the expression of extracellular matrix components particularly in the valves that had been γ-irradiated following decellularization and cryopreservation. In this group, histology and immunohistochemistry showed an obvious reduction in staining for chondroitin sulphates, versican, hyaluronan, and collagens. Transmission electron microscopy revealed the smallest fibril diameter of collagen, shortest D-period, and loss of compactness of collagen fiber packaging and fragmentation of elastic fibers. Biochemical analysis showed loss of collagen and elastin crosslinks. Decellularization followed by cryopreservation showed some reduction in staining for collagens and versican, smaller diameter, shorter D-period in collagen fibers, and ridges in elastic fibers. Cryopreservation alone showed minimal changes in ECM staining intensity, collagen, and elastin ultrastructure and biochemistry. CONCLUSION γ-Irradiated valves that have been decellularized and cryopreserved produces significant changes in the expression of ECM components, thus providing useful information for improving valve preparation for clinical use and also some indication as to why irradiated human heart valves were not clinically successful.


Biomedical Materials | 2015

CD133 antibody conjugation to decellularized human heart valves intended for circulating cell capture

John D Vossler; Young Min Ju; J. Koudy Williams; Steven Goldstein; James Hamlin; Sang Jin Lee; James J. Yoo; Anthony Atala

The long term efficacy of tissue based heart valve grafts may be limited by progressive degeneration characterized by immune mediated inflammation and calcification. To avoid this degeneration, decellularized heart valves with functionalized surfaces capable of rapid in vivo endothelialization have been developed. The aim of this study is to examine the capacity of CD133 antibody-conjugated valve tissue to capture circulating endothelial progenitor cells (EPCs). Decellularized human pulmonary valve tissue was conjugated with CD133 antibody at varying concentrations and exposed to CD133 expressing NTERA-2 cl.D1 (NT2) cells in a microflow chamber. The amount of CD133 antibody conjugated on the valve tissue surface and the number of NT2 cells captured in the presence of shear stress was measured. Both the amount of CD133 antibody conjugated to the valve leaflet surface and the number of adherent NT2 cells increased as the concentration of CD133 antibody present in the surface immobilization procedure increased. The data presented in this study support the hypothesis that the rate of CD133(+) cell adhesion in the presence of shear stress to decellularized heart valve tissue functionalized by CD133 antibody conjugation increases as the quantity of CD133 antibody conjugated to the tissue surface increases.


SpringerPlus | 2016

Remodeling an infarcted heart: novel hybrid treatment with transmyocardial revascularization and stem cell therapy

Jessika Iwanski; Raymond K. Wong; Douglas F. Larson; Alice S. Ferng; Raymond B. Runyan; Steven Goldstein; Zain Khalpey

Transmyocardial revascularization (TMR) has emerged as an additional therapeutic option for patients suffering from diffuse coronary artery disease (CAD), providing immediate angina relief. Recent studies indicate that the volume of surgical cases being performed with TMR have been steadily rising, utilizing TMR as an adjunctive therapy. Therefore the purpose of this review is to provide an up-to-date appreciation of the current state of TMR and its future developmental directions on CAD treatment. The current potential of this therapy focuses on the implementation of stem cells, in order to create a synergistic angiogenic effect while increasing myocardial repair and regeneration. Although TMR procedures provide increased vascularization within the myocardium, patients suffering from ischemic cardiomyopathy may not benefit from angiogenesis alone. Therefore, the goal of introducing stem cells is to restore the functional state of a failing heart by providing these cells with a favorable microenvironment that will enhance stem cell engraftment.


Archive | 1995

Treated tissue for implantation and methods of preparation

Steven Goldstein


Archive | 1995

Method of preparing transplant tissue to reduce immunogenicity upon implantation

Steven Goldstein


Archive | 1995

Treated tissue for implantation and preparation methods

Steven Goldstein

Collaboration


Dive into the Steven Goldstein's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge