Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven Goossens is active.

Publication


Featured researches published by Steven Goossens.


Nature | 2011

A vascular niche and a VEGF–Nrp1 loop regulate the initiation and stemness of skin tumours

Benjamin Beck; Gregory Driessens; Steven Goossens; Khalil Kass Youssef; Anna Kuchnio; Amélie Caauwe; Panagiota A. Sotiropoulou; Sonja Loges; Gaëlle Lapouge; Aurélie Candi; Guilhem Mascré; Benjamin Drogat; Sophie Dekoninck; Jody J. Haigh; Peter Carmeliet; Cédric Blanpain

Angiogenesis is critical during tumour initiation and malignant progression. Different strategies aimed at blocking vascular endothelial growth factor (VEGF) and its receptors have been developed to inhibit angiogenesis in cancer patients. It has become increasingly clear that in addition to its effect on angiogenesis, other mechanisms including a direct effect of VEGF on tumour cells may account for the efficiency of VEGF-blockade therapies. Cancer stem cells (CSCs) have been described in various cancers including squamous tumours of the skin. Here we use a mouse model of skin tumours to investigate the impact of the vascular niche and VEGF signalling on controlling the stemness (the ability to self renew and differentiate) of squamous skin tumours during the early stages of tumour progression. We show that CSCs of skin papillomas are localized in a perivascular niche, in the immediate vicinity of endothelial cells. Furthermore, blocking VEGFR2 caused tumour regression not only by decreasing the microvascular density, but also by reducing CSC pool size and impairing CSC renewal properties. Conditional deletion of Vegfa in tumour epithelial cells caused tumours to regress, whereas VEGF overexpression by tumour epithelial cells accelerated tumour growth. In addition to its well-known effect on angiogenesis, VEGF affected skin tumour growth by promoting cancer stemness and symmetric CSC division, leading to CSC expansion. Moreover, deletion of neuropilin-1 (Nrp1), a VEGF co-receptor expressed in cutaneous CSCs, blocked VEGF’s ability to promote cancer stemness and renewal. Our results identify a dual role for tumour-cell-derived VEGF in promoting cancer stemness: by stimulating angiogenesis in a paracrine manner, VEGF creates a perivascular niche for CSCs, and by directly affecting CSCs through Nrp1 in an autocrine loop, VEGF stimulates cancer stemness and renewal. Finally, deletion of Nrp1 in normal epidermis prevents skin tumour initiation. These results may have important implications for the prevention and treatment of skin cancers.


The EMBO Journal | 2010

Increased skeletal VEGF enhances β-catenin activity and results in excessively ossified bones

Christa Maes; Steven Goossens; Sonia Bartunkova; Benjamin Drogat; Lieve Coenegrachts; Ingrid Stockmans; Karen Moermans; Omar Nyabi; Katharina Haigh; Michael Naessens; Lieven Haenebalcke; Jan Tuckermann; Marc Tjwa; Peter Carmeliet; Vice Mandic; Jean-Pierre David; Axel Behrens; Andras Nagy; Geert Carmeliet; Jody J. Haigh

Vascular endothelial growth factor (VEGF) and β‐catenin both act broadly in embryogenesis and adulthood, including in the skeletal and vascular systems. Increased or deregulated activity of these molecules has been linked to cancer and bone‐related pathologies. By using novel mouse models to locally increase VEGF levels in the skeleton, we found that embryonic VEGF over‐expression in osteo‐chondroprogenitors and their progeny largely pheno‐copied constitutive β‐catenin activation. Adult induction of VEGF in these cell populations dramatically increased bone mass, associated with aberrant vascularization, bone marrow fibrosis and haematological anomalies. Genetic and pharmacological interventions showed that VEGF increased bone mass through a VEGF receptor 2‐ and phosphatidyl inositol 3‐kinase‐mediated pathway inducing β‐catenin transcriptional activity in endothelial and osteoblastic cells, likely through modulation of glycogen synthase kinase 3‐β phosphorylation. These insights into the actions of VEGF in the bone and marrow environment underscore its power as pleiotropic bone anabolic agent but also warn for caution in its therapeutic use. Moreover, the finding that VEGF can modulate β‐catenin activity may have widespread physiological and clinical ramifications.


Nucleic Acids Research | 2009

Efficient mouse transgenesis using Gateway-compatible ROSA26 locus targeting vectors and F1 hybrid ES cells

Omar Nyabi; Michael Naessens; Katharina Haigh; Agnieszka Gembarska; Steven Goossens; Marion M. Maetens; Sarah De Clercq; Benjamin Drogat; Lieven Haenebalcke; Sonia Bartunkova; Ilse De Vos; Bram De Craene; Mansour Karimi; Geert Berx; Andras Nagy; Pierre Hilson; Jean-Christophe Marine; Jody J. Haigh

The ability to rapidly and efficiently generate reliable Cre/loxP conditional transgenic mice would greatly complement global high-throughput gene targeting initiatives aimed at identifying gene function in the mouse. We report here the generation of Cre/loxP conditional ROSA26-targeted ES cells within 3–4 weeks by using Gateway® cloning to build the target vectors. The cDNA of the gene of interest can be expressed either directly by the ROSA26 promoter providing a moderate level of expression or by a CAGG promoter placed in the ROSA26 locus providing higher transgene expression. Utilization of F1 hybrid ES cells with exceptional developmental potential allows the production of germ line transmitting, fully or highly ES cell-derived mice by aggregation of cells with diploid embryos. The presented streamlined procedures accelerate the examination of phenotypical consequences of transgene expression. It also provides a unique tool for comparing the biological activity of polymorphic or splice variants of a gene, or products of different genes functioning in the same or parallel pathways in an overlapping manner.


Blood | 2014

ABT-199 mediated inhibition of BCL-2 as a novel therapeutic strategy in T-cell acute lymphoblastic leukemia

Sofie Peirs; Filip Matthijssens; Steven Goossens; Inge Vande Walle; Katia Ruggero; Charles E. de Bock; Sandrine Degryse; Kirsten Canté-Barrett; Delphine Briot; Emmanuelle Clappier; Tim Lammens; Barbara De Moerloose; Yves Benoit; Bruce Poppe; Jules P.P. Meijerink; Jan Cools; Jean Soulier; Terence H. Rabbitts; Tom Taghon; Franki Speleman; Pieter Van Vlierberghe

T-cell acute lymphoblastic leukemia (T-ALL) is a high-risk subtype of acute lymphoblastic leukemia (ALL) with gradually improved survival through introduction of intensified chemotherapy. However, therapy-resistant or refractory T-ALL remains a major clinical challenge. Here, we evaluated B-cell lymphoma (BCL)-2 inhibition by the BH3 mimetic ABT-199 as a new therapeutic strategy in human T-ALL. The T-ALL cell line LOUCY, which shows a transcriptional program related to immature T-ALL, exhibited high in vitro and in vivo sensitivity for ABT-199 in correspondence with high levels of BCL-2. In addition, ABT-199 showed synergistic therapeutic effects with different chemotherapeutic agents including doxorubicin, l-asparaginase, and dexamethasone. Furthermore, in vitro analysis of primary patient samples indicated that some immature, TLX3- or HOXA-positive primary T-ALLs are highly sensitive to BCL-2 inhibition, whereas TAL1 driven tumors mostly showed poor ABT-199 responses. Because BCL-2 shows high expression in early T-cell precursors and gradually decreases during normal T-cell differentiation, differences in ABT-199 sensitivity could partially be mediated by distinct stages of differentiation arrest between different molecular genetic subtypes of human T-ALL. In conclusion, our study highlights BCL-2 as an attractive molecular target in specific subtypes of human T-ALL that could be exploited by ABT-199.


Neuron | 2013

Directed Migration of Cortical Interneurons Depends on the Cell-Autonomous Action of Sip1

Veronique van den Berghe; Elke Stappers; Bram Vandesande; Jordane Dimidschstein; Roel Kroes; Annick Francis; Andrea Conidi; Flore Lesage; Ruden Dries; Silvia Cazzola; Geert Berx; Nicoletta Kessaris; Pierre Vanderhaeghen; Wilfred van IJcken; Frank Grosveld; Steven Goossens; Jody J. Haigh; Gord Fishell; André M. Goffinet; Stein Aerts; Danny Huylebroeck; Eve Seuntjens

GABAergic interneurons mainly originate in the medial ganglionic eminence (MGE) of the embryonic ventral telencephalon (VT) and migrate tangentially to the cortex, guided by membrane-bound and secreted factors. We found that Sip1 (Zfhx1b, Zeb2), a transcription factor enriched in migrating cortical interneurons, is required for their proper differentiation and correct guidance. The majority of Sip1 knockout interneurons fail to migrate to the neocortex and stall in the VT. RNA sequencing reveals that Sip1 knockout interneurons do not acquire a fully mature cortical interneuron identity and contain increased levels of the repulsive receptor Unc5b. Focal electroporation of Unc5b-encoding vectors in the MGE of wild-type brain slices disturbs migration to the neocortex, whereas reducing Unc5b levels in Sip1 knockout slices and brains rescues the migration defect. Our results reveal that Sip1, through tuning of Unc5b levels, is essential for cortical interneuron guidance.


Blood | 2011

The EMT regulator Zeb2/Sip1 is essential for murine embryonic hematopoietic stem/progenitor cell differentiation and mobilization

Steven Goossens; Viktor Janzen; Sonia Bartunkova; Tomomasa Yokomizo; Benjamin Drogat; Mihaela Crisan; Katharina Haigh; Eve Seuntjens; Lieve Umans; Tamara Riedt; Pieter Bogaert; Lieven Haenebalcke; Geert Berx; Elaine Dzierzak; Danny Huylebroeck; Jody J. Haigh

Zeb2 (Sip1/Zfhx1b) is a member of the zinc-finger E-box-binding (ZEB) family of transcriptional repressors previously demonstrated to regulate epithelial-to-mesenchymal transition (EMT) processes during embryogenesis and tumor progression. We found high Zeb2 mRNA expression levels in HSCs and hematopoietic progenitor cells (HPCs), and examined Zeb2 function in hematopoiesis through a conditional deletion approach using the Tie2-Cre and Vav-iCre recombination mouse lines. Detailed cellular analysis demonstrated that Zeb2 is dispensable for hematopoietic cluster and HSC formation in the aorta-gonadomesonephros region of the embryo, but is essential for normal HSC/HPC differentiation. In addition, Zeb2-deficient HSCs/HPCs fail to properly colonize the fetal liver and/or bone marrow and show enhanced adhesive properties associated with increased β1 integrin and Cxcr4 expression. Moreover, deletion of Zeb2 resulted in embryonic (Tie2-Cre) and perinatal (Vav-icre) lethality due to severe cephalic hemorrhaging and decreased levels of angiopoietin-1 and, subsequently, improper pericyte coverage of the cephalic vasculature. These results reveal essential roles for Zeb2 in embryonic hematopoiesis and are suggestive of a role for Zeb2 in hematopoietic-related pathologies in the adult.


Journal of Cell Science | 2012

Loss of αT-catenin alters the hybrid adhering junctions in the heart and leads to dilated cardiomyopathy and ventricular arrhythmia following acute ischemia.

Jifen Li; Steven Goossens; Jolanda van Hengel; Erhe Gao; Lan Cheng; Koen Tyberghein; Xiying Shang; Riet De Rycke; Frans van Roy; Glenn L. Radice

It is generally accepted that the intercalated disc (ICD) required for mechano-electrical coupling in the heart consists of three distinct junctional complexes: adherens junctions, desmosomes and gap junctions. However, recent morphological and molecular data indicate a mixing of adherens junctional and desmosomal components, resulting in a ‘hybrid adhering junction’ or ‘area composita’. The α-catenin family member αT-catenin, part of the N-cadherin–catenin adhesion complex in the heart, is the only α-catenin that interacts with the desmosomal protein plakophilin-2 (PKP2). Thus, it has been postulated that αT-catenin might serve as a molecular integrator of the two adhesion complexes in the area composita. To investigate the role of αT-catenin in the heart, gene targeting technology was used to delete the Ctnna3 gene, encoding αT-catenin, in the mouse. The αT-catenin-null mice are viable and fertile; however, the animals exhibit progressive cardiomyopathy. Adherens junctional and desmosomal proteins were unaffected by loss of αT-catenin, with the exception of the desmosomal protein PKP2. Immunogold labeling at the ICD demonstrated in the αT-catenin-null heart a preferential reduction of PKP2 at the area composita compared with the desmosome. Furthermore, gap junction protein Cx43 was reduced at the ICD, including its colocalization with N-cadherin. Gap junction remodeling in αT-catenin-knockout hearts was associated with an increased incidence of ventricular arrhythmias after acute ischemia. This novel animal model demonstrates for the first time how perturbation in αT-catenin can affect both PKP2 and Cx43 and thereby highlights the importance of understanding the crosstalk between the junctional proteins of the ICD and its implications for arrhythmogenic cardiomyopathy.


Circulation Research | 2015

Alpha-Catenins Control Cardiomyocyte Proliferation by Regulating Yap Activity

Jifen Li; Erhe Gao; Alexia Vite; Roslyn Yi; Ludovic Gomez; Steven Goossens; Frans van Roy; Glenn L. Radice

Rationale: Shortly after birth, muscle cells of the mammalian heart lose their ability to divide. Thus, they are unable to effectively replace dying cells in the injured heart. The recent discovery that the transcriptional coactivator Yes-associated protein (Yap) is necessary and sufficient for cardiomyocyte proliferation has gained considerable attention. However, the upstream regulators and signaling pathways that control Yap activity in the heart are poorly understood. Objective: To investigate the role of &agr;-catenins in the heart using cardiac-specific &agr;E- and &agr;T-catenin double knockout mice. Methods and Results: We used 2 cardiac-specific Cre transgenes to delete both &agr;E-catenin (Ctnna1) and &agr;T-catenin (Ctnna3) genes either in the perinatal or in the adult heart. Perinatal depletion of &agr;-catenins increased cardiomyocyte number in the postnatal heart. Increased nuclear Yap and the cell cycle regulator cyclin D1 accompanied cardiomyocyte proliferation in the &agr;-catenin double knockout hearts. Fetal genes were increased in the &agr;-catenin double knockout hearts indicating a less mature cardiac gene expression profile. Knockdown of &agr;-catenins in neonatal rat cardiomyocytes also resulted in increased proliferation, which could be blocked by knockdown of Yap. Finally, inactivation of &agr;-catenins in the adult heart using an inducible Cre led to increased nuclear Yap and cardiomyocyte proliferation and improved contractility after myocardial infarction. Conclusions: These studies demonstrate that &agr;-catenins are critical regulators of Yap, a transcriptional coactivator essential for cardiomyocyte proliferation. Furthermore, we provide proof of concept that inhibiting &agr;-catenins might be a useful strategy to promote myocardial regeneration after injury.


Journal of Experimental Medicine | 2015

Terminal NK cell maturation is controlled by concerted actions of T-bet and Zeb2 and is essential for melanoma rejection.

Mary J. van Helden; Steven Goossens; Cécile Daussy; Anne-Laure Mathieu; Fabrice Faure; Antoine Marçais; Niels Vandamme; Natalie Farla; Katia Mayol; Sébastien Viel; Sophie Degouve; Emilie Debien; Eve Seuntjens; Andrea Conidi; Julie Chaix; Philippe Mangeot; Simon de Bernard; Laurent Buffat; Jody J. Haigh; Danny Huylebroeck; Bart M. Lambrecht; Geert Berx; Thierry Walzer

The transcription factor Zeb2 cooperates with T-bet to control NK cell maturation, viability, and exit from the bone marrow and is essential for rejection of melanoma lung metastasis.


Leukemia | 2015

MicroRNA-193b-3p acts as a tumor suppressor by targeting the MYB oncogene in T-cell acute lymphoblastic leukemia

Evelien Mets; J Van der Meulen; G Van Peer; Michael Boice; Pieter Mestdagh; I Van de Walle; Tim Lammens; Steven Goossens; B De Moerloose; Yves Benoit; N. Van Roy; Emmanuelle Clappier; Bruce Poppe; Jo Vandesompele; H-G Wendel; Tom Taghon; Pieter Rondou; Jean Soulier; P Van Vlierberghe; F. Speleman

The MYB oncogene is a leucine zipper transcription factor essential for normal and malignant hematopoiesis. In T-cell acute lymphoblastic leukemia (T-ALL), elevated MYB levels can arise directly through T-cell receptor-mediated MYB translocations, genomic MYB duplications or enhanced TAL1 complex binding at the MYB locus or indirectly through the TAL1/miR-223/FBXW7 regulatory axis. In this study, we used an unbiased MYB 3′untranslated region–microRNA (miRNA) library screen and identified 33 putative MYB-targeting miRNAs. Subsequently, transcriptome data from two independent T-ALL cohorts and different subsets of normal T-cells were used to select miRNAs with relevance in the context of normal and malignant T-cell transformation. Hereby, miR-193b-3p was identified as a novel bona fide tumor-suppressor miRNA that targets MYB during malignant T-cell transformation thereby offering an entry point for efficient MYB targeting-oriented therapies for human T-ALL.

Collaboration


Dive into the Steven Goossens's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge