Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven Hockman is active.

Publication


Featured researches published by Steven Hockman.


Journal of Clinical Investigation | 2006

Alterations in regulation of energy homeostasis in cyclic nucleotide phosphodiesterase 3B–null mice

Young Hun Choi; Sunhee Park; Steven Hockman; Emilia Zmuda-Trzebiatowska; Fredrik Svennelid; Martin Haluzik; Oksana Gavrilova; Faiyaz Ahmad; Laurent Pepin; Maria Napolitano; Masato Taira; F. Sundler; Lena Stenson Holst; Eva Degerman; Vincent C. Manganiello

Cyclic nucleotide phosphodiesterase 3B (PDE3B) has been suggested to be critical for mediating insulin/IGF-1 inhibition of cAMP signaling in adipocytes, liver, and pancreatic beta cells. In Pde3b-KO adipocytes we found decreased adipocyte size, unchanged insulin-stimulated phosphorylation of protein kinase B and activation of glucose uptake, enhanced catecholamine-stimulated lipolysis and insulin-stimulated lipogenesis, and blocked insulin inhibition of catecholamine-stimulated lipolysis. Glucose, alone or in combination with glucagon-like peptide-1, increased insulin secretion more in isolated pancreatic KO islets, although islet size and morphology and immunoreactive insulin and glucagon levels were unchanged. The beta(3)-adrenergic agonist CL 316,243 (CL) increased lipolysis and serum insulin more in KO mice, but blood glucose reduction was less in CL-treated KO mice. Insulin resistance was observed in KO mice, with liver an important site of alterations in insulin-sensitive glucose production. In KO mice, liver triglyceride and cAMP contents were increased, and the liver content and phosphorylation states of several insulin signaling, gluconeogenic, and inflammation- and stress-related components were altered. Thus, PDE3B may be important in regulating certain cAMP signaling pathways, including lipolysis, insulin-induced antilipolysis, and cAMP-mediated insulin secretion. Altered expression and/or regulation of PDE3B may contribute to metabolic dysregulation, including systemic insulin resistance.


Circulation Research | 2013

Phosphodiesterase Type 3A Regulates Basal Myocardial Contractility Through Interacting With Sarcoplasmic Reticulum Calcium ATPase Type 2a Signaling Complexes in Mouse Heart

Sanja Beca; Faiyaz Ahmad; Weixing Shen; Jie Liu; Samy Makary; Nazari Polidovitch; Junhui Sun; Steven Hockman; Youn Wook Chung; Matthew A. Movsesian; Elizabeth Murphy; Vincent C. Manganiello; Peter H. Backx

Rationale: cAMP is an important regulator of myocardial function, and regulation of cAMP hydrolysis by cyclic nucleotide phosphodiesterases (PDEs) is a critical determinant of the amplitude, duration, and compartmentation of cAMP-mediated signaling. The role of different PDE isozymes, particularly PDE3A vs PDE3B, in the regulation of heart function remains unclear. Objective: To determine the relative contribution of PDE3A vs PDE3B isozymes in the regulation of heart function and to dissect the molecular basis for this regulation. Methods and Results: Compared with wild-type littermates, cardiac contractility and relaxation were enhanced in isolated hearts from PDE3A−/−, but not PDE3B−/−, mice. Furthermore, PDE3 inhibition had no effect on PDE3A−/− hearts but increased contractility in wild-type (as expected) and PDE3B−/− hearts to levels indistinguishable from PDE3A−/−. The enhanced contractility in PDE3A−/− hearts was associated with cAMP-dependent elevations in Ca2+ transient amplitudes and increased sarcoplasmic reticulum (SR) Ca2+ content, without changes in L-type Ca2+ currents of cardiomyocytes, as well as with increased SR Ca2+-ATPase type 2a activity, SR Ca2+ uptake rates, and phospholamban phosphorylation in SR fractions. Consistent with these observations, PDE3 activity was reduced ≈8-fold in SR fractions from PDE3A−/− hearts. Coimmunoprecipitation experiments further revealed that PDE3A associates with both SR calcium ATPase type 2a and phospholamban in a complex that also contains A-kinase anchoring protein-18, protein kinase type A-RII, and protein phosphatase type 2A. Conclusions: Our data support the conclusion that PDE3A is the primary PDE3 isozyme modulating basal contractility and SR Ca2+ content by regulating cAMP in microdomains containing macromolecular complexes of SR calcium ATPase type 2a–phospholamban–PDE3A.Rationale: cAMP is an important regulator of myocardial function, and regulation of cAMP hydrolysis by cyclic nucleotide phosphodiesterases (PDEs) is a critical determinant of the amplitude, duration, and compartmentation of cAMP-mediated signaling. The role of different PDE isozymes, particularly PDE3A versus PDE3B, in the regulation of heart function remains unclear. Objective: To determine the relative contribution of PDE3A versus PDE3B isozymes in the regulation of heart function and to dissect the molecular basis for this regulation. Methods and Results: Compared to wild-type (WT) littermates, cardiac contractility and relaxation were enhanced in isolated hearts from PDE3A -/- , but not PDE3B -/- , mice. Furthermore, PDE3 inhibition had no effect on PDE3A -/- hearts but increased contractility in WT (as expected) and PDE3B -/- hearts to levels indistinguishable from PDE3A -/- . The enhanced contractility in PDE3A -/- hearts was associated with cAMP-dependent elevations in Ca 2+ transient amplitudes and increased SR Ca 2+ content, without changes in L-type Ca 2+ currents (I CaL ) of cardiomyocytes, as well as with increased SR Ca 2+ -ATPase (SERCA2a) activity, SR Ca 2+ uptake rates, and phospholamban (PLN) phosphorylation in SR fractions. Consistent with these observations, PDE3 activity was reduced ~8-fold in SR fractions from PDE3A -/- hearts. Co-immunoprecipitation experiments further revealed that PDE3A associates with both SERCA2a and PLN in a complex which also contains AKAP-18, PKA-RII and PP2A. Conclusions: Our data support the conclusion that PDE3A is the primary PDE3 isozyme modulating basal contractility and SR Ca 2+ content by regulating cAMP in microdomains containing macromolecular complexes of SERCA2a-PLN-PDE3A.


Journal of Biological Chemistry | 2011

Phosphodiesterase 3A (PDE3A) Deletion Suppresses Proliferation of Cultured Murine Vascular Smooth Muscle Cells (VSMCs) via Inhibition of Mitogen-activated Protein Kinase (MAPK) Signaling and Alterations in Critical Cell Cycle Regulatory Proteins

Najma Begum; Steven Hockman; Vincent C. Manganiello

Cyclic nucleotide phosphodiesterase 3 (PDE3) is an important regulator of cyclic adenosine monophosphate (cAMP) signaling within the cardiovascular system. In this study, we examined the role of PDE3A and PDE3B isoforms in regulation of growth of cultured vascular smooth muscle cells (VSMCs) and the mechanisms by which they may affect signaling pathways that mediate mitogen-induced VSMC proliferation. Serum- and PDGF-induced DNA synthesis in VSMCs grown from aortas of PDE3A-deficient (3A-KO) mice was markedly less than that in VSMCs from PDE3A wild type (3A-WT) and PDE3B-deficient (3B-KO) mice. The reduced growth response was accompanied by significantly less phosphorylation of extracellular signal-regulated kinase (ERK) in 3A-KO VSMCs, most likely due to a combination of greater site-specific inhibitory phosphorylation of Raf-1Ser-259 by protein kinase A (PKA) and enhanced dephosphorylation of ERKs due to elevated mitogen-activated protein kinase phosphatase 1 (MKP-1). Furthermore, 3A-KO VSMCs, compared with 3A-WT, exhibited higher basal PKA activity and cAMP response element-binding protein (CREB) phosphorylation, higher levels of p53 and p53 phosphorylation, and elevated p21 protein together with lower levels of Cyclin-D1 and retinoblastoma (Rb) protein and Rb phosphorylation. Adenoviral overexpression of inactive CREB partially restored growth effects of serum in 3A-KO VSMCs. In contrast, exposure of 3A-WT VSMCs to VP16 CREB (active CREB) was associated with inhibition of serum-induced DNA synthesis similar to that in untreated 3A-KO VSMCs. Transfection of 3A-KO VSMCs with p53 siRNA reduced p21 and MKP-1 levels and completely restored growth without affecting amounts of Cyclin-D1 and Rb phosphorylation. We conclude that PDE3A regulates VSMC growth via two complementary pathways, i.e. PKA-catalyzed inhibitory phosphorylation of Raf-1 with resulting inhibition of MAPK signaling and PKA/CREB-mediated induction of p21, leading to G0/G1 cell cycle arrest, as well as by increased accumulation of p53, which induces MKP-1, p21, and WIP1, leading to inhibition of G1 to S cell cycle progression.


Circulation Research | 2012

PDE3A Regulates Basal Myocardial Contractility Through Interacting with SERCA2a-Signaling Complexes in Mouse Heart

Sanja Beca; Faiyaz Ahmad; Weixing Shen; Jie Liu; Samy Makary; Nazar Polidovitch; Junhui Sun; Steven Hockman; Youn Wook Chung; Elizabeth Murphy; Vincent C. Manganiello; Peter H. Backx

Rationale: cAMP is an important regulator of myocardial function, and regulation of cAMP hydrolysis by cyclic nucleotide phosphodiesterases (PDEs) is a critical determinant of the amplitude, duration, and compartmentation of cAMP-mediated signaling. The role of different PDE isozymes, particularly PDE3A vs PDE3B, in the regulation of heart function remains unclear. Objective: To determine the relative contribution of PDE3A vs PDE3B isozymes in the regulation of heart function and to dissect the molecular basis for this regulation. Methods and Results: Compared with wild-type littermates, cardiac contractility and relaxation were enhanced in isolated hearts from PDE3A−/−, but not PDE3B−/−, mice. Furthermore, PDE3 inhibition had no effect on PDE3A−/− hearts but increased contractility in wild-type (as expected) and PDE3B−/− hearts to levels indistinguishable from PDE3A−/−. The enhanced contractility in PDE3A−/− hearts was associated with cAMP-dependent elevations in Ca2+ transient amplitudes and increased sarcoplasmic reticulum (SR) Ca2+ content, without changes in L-type Ca2+ currents of cardiomyocytes, as well as with increased SR Ca2+-ATPase type 2a activity, SR Ca2+ uptake rates, and phospholamban phosphorylation in SR fractions. Consistent with these observations, PDE3 activity was reduced ≈8-fold in SR fractions from PDE3A−/− hearts. Coimmunoprecipitation experiments further revealed that PDE3A associates with both SR calcium ATPase type 2a and phospholamban in a complex that also contains A-kinase anchoring protein-18, protein kinase type A-RII, and protein phosphatase type 2A. Conclusions: Our data support the conclusion that PDE3A is the primary PDE3 isozyme modulating basal contractility and SR Ca2+ content by regulating cAMP in microdomains containing macromolecular complexes of SR calcium ATPase type 2a–phospholamban–PDE3A.Rationale: cAMP is an important regulator of myocardial function, and regulation of cAMP hydrolysis by cyclic nucleotide phosphodiesterases (PDEs) is a critical determinant of the amplitude, duration, and compartmentation of cAMP-mediated signaling. The role of different PDE isozymes, particularly PDE3A versus PDE3B, in the regulation of heart function remains unclear. Objective: To determine the relative contribution of PDE3A versus PDE3B isozymes in the regulation of heart function and to dissect the molecular basis for this regulation. Methods and Results: Compared to wild-type (WT) littermates, cardiac contractility and relaxation were enhanced in isolated hearts from PDE3A -/- , but not PDE3B -/- , mice. Furthermore, PDE3 inhibition had no effect on PDE3A -/- hearts but increased contractility in WT (as expected) and PDE3B -/- hearts to levels indistinguishable from PDE3A -/- . The enhanced contractility in PDE3A -/- hearts was associated with cAMP-dependent elevations in Ca 2+ transient amplitudes and increased SR Ca 2+ content, without changes in L-type Ca 2+ currents (I CaL ) of cardiomyocytes, as well as with increased SR Ca 2+ -ATPase (SERCA2a) activity, SR Ca 2+ uptake rates, and phospholamban (PLN) phosphorylation in SR fractions. Consistent with these observations, PDE3 activity was reduced ~8-fold in SR fractions from PDE3A -/- hearts. Co-immunoprecipitation experiments further revealed that PDE3A associates with both SERCA2a and PLN in a complex which also contains AKAP-18, PKA-RII and PP2A. Conclusions: Our data support the conclusion that PDE3A is the primary PDE3 isozyme modulating basal contractility and SR Ca 2+ content by regulating cAMP in microdomains containing macromolecular complexes of SERCA2a-PLN-PDE3A.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Targeted disruption of PDE3B, but not PDE3A, protects murine heart from ischemia/reperfusion injury

Youn Wook Chung; Claudia Lagranha; Yong Chen; Junhui Sun; Guang Tong; Steven Hockman; Faiyaz Ahmad; Shervin G. Esfahani; Dahae H. Bae; Nazari Polidovitch; Jian Wu; Dong Keun Rhee; Beom Seob Lee; Marjan Gucek; Mathew P. Daniels; Christine A. Brantner; Peter H. Backx; Elizabeth Murphy; Vincent C. Manganiello

Significance By catalyzing the destruction of cAMP and cGMP, cyclic nucleotide phosphodiesterases (PDEs) regulate their intracellular concentrations and biological actions. Eleven distinct gene families (PDE1–PDE11) define the PDE superfamily. Most families contain several PDE genes. Two separate but related genes generate PDE3 subfamilies PDE3A and PDE3B. Although inhibition of PDE3 protects rodent heart against ischemia/reperfusion (I/R) injury, the specific PDE3 isoform involved is undetermined. Using PDE3A- and PDE3B-KO mice, we report that deletion of PDE3B, but not PDE3A, protected mouse heart from I/R injury in vivo and in vitro, via cAMP-induced preconditioning. To our knowledge, our study is the first to define a role for PDE3B in cardioprotection against I/R injury and suggests PDE3B as a target for cardiovascular therapies. Although inhibition of cyclic nucleotide phosphodiesterase type 3 (PDE3) has been reported to protect rodent heart against ischemia/reperfusion (I/R) injury, neither the specific PDE3 isoform involved nor the underlying mechanisms have been identified. Targeted disruption of PDE3 subfamily B (PDE3B), but not of PDE3 subfamily A (PDE3A), protected mouse heart from I/R injury in vivo and in vitro, with reduced infarct size and improved cardiac function. The cardioprotective effect in PDE3B−/− heart was reversed by blocking cAMP-dependent PKA and by paxilline, an inhibitor of mitochondrial calcium-activated K channels, the opening of which is potentiated by cAMP/PKA signaling. Compared with WT mitochondria, PDE3B−/− mitochondria were enriched in antiapoptotic Bcl-2, produced less reactive oxygen species, and more frequently contacted transverse tubules where PDE3B was localized with caveolin-3. Moreover, a PDE3B−/− mitochondrial fraction containing connexin-43 and caveolin-3 was more resistant to Ca2+-induced opening of the mitochondrial permeability transition pore. Proteomics analyses indicated that PDE3B−/− heart mitochondria fractions were enriched in buoyant ischemia-induced caveolin-3–enriched fractions (ICEFs) containing cardioprotective proteins. Accumulation of proteins into ICEFs was PKA dependent and was achieved by ischemic preconditioning or treatment of WT heart with the PDE3 inhibitor cilostamide. Taken together, these findings indicate that PDE3B deletion confers cardioprotective effects because of cAMP/PKA-induced preconditioning, which is associated with the accumulation of proteins with cardioprotective function in ICEFs. To our knowledge, our study is the first to define a role for PDE3B in cardioprotection against I/R injury and suggests PDE3B as a target for cardiovascular therapies.


Cell Biochemistry and Biophysics | 1998

EXPRESSION AND CHARACTERIZATION OF DELETION RECOMBINANTS OF TWO CGMP-INHIBITED CYCLIC NUCLEOTIDE PHOSPHODIESTERASES (PDE-3)

Rui He; Narcisse Komas; Dag Ekholm; Taku Murata; Masato Taira; Steven Hockman; Eva Degerman; Vincent C. Manganiello

AbstractcDNAs encoding two PDE-3 or cyclic GMP-inhibited (cGI) cyclic nucleotide phosphodiesterase (PDE) isoforms, RPDE-3B (RcGIP1) and HPDE-3A (HcGIP2), were cloned from rat (R) adipose tissue and human (H) heart cDNA libraries. Deletion and N- and C-terminal truncation mutants were expressed inEscherichia coli in order to define their catalytic core. Active mutants of both RPDE-3B and HPDE-3A included the domain conserved among all PDEs plus additional upstream and downstream sequences. An RPDE-3B mutant consisting of the conserved domain alone and one from which the RPDE-3B 44-amino acid insertion was deleted exhibited little or no activity. All active recombinants exhibited a high affinity (<1 μM) for cyclic AMP (cAMP) and cyclic GMP (cGMP), were inhibited by cAMP, cGMP, and cilostamide, but not by rolipram, and were photolabeled with [32P]-cGMP. The IC50 values for cGMP inhibition of cAMP hydrolysis were lower for HPDE-3A than for RPDE-3B recombinants. The deduced amino acid sequences of HPDE-3A and RPDE-3B catalytic domains are very similar except for the 44-amino acid insertion not found in other PDEs. It is possible that this insertion may not only distinguish PDE-3 catalytic domains from other PDEs and identify catalytic domains of PDE-3 subfamilies or conserved members of the PDE-3 gene family, but may also be involved in the regulation of sensitivity of PDE-3s to cGMP.


Endocrinology | 2013

A Role for Phosphodiesterase 3B in Acquisition of Brown Fat Characteristics by White Adipose Tissue in Male Mice

Emilia Guirguis; Steven Hockman; Youn Wook Chung; Faiyaz Ahmad; Oksana Gavrilova; Nalini Raghavachari; Yanqin Yang; Gang Niu; Xiaoyuan Chen; Zu Xi Yu; Shiwei Liu; Eva Degerman; Vincent C. Manganiello

Obesity is linked to various diseases, including insulin resistance, diabetes, and cardiovascular disorders. The idea of inducing white adipose tissue (WAT) to assume characteristics of brown adipose tissue (BAT), and thus gearing it to fat burning instead of storage, is receiving serious consideration as potential treatment for obesity and related disorders. Phosphodiesterase 3B (PDE3B) links insulin- and cAMP-signaling networks in tissues associated with energy metabolism, including WAT. We used C57BL/6 PDE3B knockout (KO) mice to elucidate mechanisms involved in the formation of BAT in epididymal WAT (EWAT) depots. Examination of gene expression profiles in PDE3B KO EWAT revealed increased expression of several genes that block white and promote brown adipogenesis, such as C-terminal binding protein, bone morphogenetic protein 7, and PR domain containing 16, but a clear BAT-like phenotype was not completely induced. However, acute treatment of PDE3B KO mice with the β3-adrenergic agonist, CL316243, markedly increased the expression of cyclooxygenase-2, which catalyzes prostaglandin synthesis and is thought to be important in the formation of BAT in WAT and the elongation of very long-chain fatty acids 3, which is linked to BAT recruitment upon cold exposure, causing a clear shift toward fat burning and the induction of BAT in KO EWAT. These data provide insight into the mechanisms of BAT formation in mouse EWAT, suggesting that, in a C57BL/6 background, an increase in cAMP, caused by ablation of PDE3B and administration of CL316243, may promote differentiation of prostaglandin-responsive progenitor cells in the EWAT stromal vascular fraction into functional brown adipocytes.


Cell Cycle | 2010

Female infertility in PDE3A(-/-) mice: polo-like kinase 1 (Plk1) may be a target of protein kinase A (PKA) and involved in meiotic arrest of oocytes from PDE3A(-/-) mice.

Weixing Shen; Faiyaz Ahmad; Steven Hockman; John Ma; Hitoshi Omi; Nalini Raghavachari; Vincent C. Manganiello

Mechanisms of cAMP/PKA-induced meiotic arrest in oocytes are not completely identified. In cultured, G2/M-arrested PDE3A-/- murine oocytes, elevated PKA activity was associated with inactivation of Cdc2 and Plk1, and inhibition of phosphorylation of histone H3 (S10) and of dephosphorylation of Cdc25B (S323) and Cdc2 (Thr14/Tyr15). In cultured WT oocytes, PKA activity was transiently reduced and then increased to that observed in PDE3A-/- oocytes; Cdc2 and Plk1 were activated, phosphorylation of histone H3 (S10) and dephosphorylation of Cdc25B (S323) and Cdc2 (Thr14/Tyr15) were observed. In WT oocytes, PKAc were rapidly translocated into nucleus, and then to the spindle apparatus, but in PDE3A-/- oocytes, PKAc remained in the cytosol. Plk1 was reactivated by incubation of PDE3A-/- oocytes with PKA inhibitor, Rp-cAMPS. PDE3A was co-localized with Plk1 in WT oocytes, and co-immunoprecipitated with Plk1 in WT ovary and Hela cells. PKAc phosphorylated rPlk1 and Hela cell Plk1 and inhibited Plk1 activity in vitro. Our results suggest that PKA-induced inhibition of Plk1 may be critical in oocyte meiotic arrest and female infertility in PDE3A-/- mice.


Journal of Biological Chemistry | 2006

Importance of cAMP-response Element-binding Protein in Regulation of Expression of the Murine Cyclic Nucleotide Phosphodiesterase 3B (Pde3b) Gene in Differentiating 3T3-L1 Preadipocytes

Hanguan Liu; Jing Rong Tang; Young Hun Choi; Maria Napolitano; Steven Hockman; Masato Taira; Eva Degerman; Vincent C. Manganiello

Incubation of 3T3-L1 preadipocytes with isobutylmethylxanthine (IBMX), dexamethasone, and insulin, alone or in combination, demonstrated that IBMX, which increased cAMP-response element-binding protein (CREB) phosphorylation, was the predominant regulator of Pde3b expression. Real time PCR and immunoblotting indicated that in 3T3-L1 preadipocytes, IBMX-stimulated induction of Pde3b mRNA and protein was markedly inhibited by dominant-negative CREB proteins. By transfecting preadipocytes, differentiating preadipocytes, and HEK293A cells with luciferase reporter vectors containing different fragments of the 5′-flanking region of the Pde3b gene, we identified a distal promoter that contained canonical cis-acting cAMP-response elements (CRE) and a proximal, GC-rich promoter region, which contained atypical CRE. Mutation of the CRE sequences dramatically reduced distal promoter activity; H89 inhibited IBMX-stimulated CREB phosphorylation and proximal and distal promoter activities. Distal promoter activity was stimulated by IBMX and phorbol ester (PMA) in Raw264.7 monocytes, but only by IBMX in 3T3-L1 preadipocytes. Chromatin immunoprecipitation analyses with specific antibodies against CREB, phospho-CREB, and CBP/p300 (CREB-binding protein) showed that these proteins associated with both distal and proximal promoters and that interaction of phospho-CREB, the active form of CREB, with both Pde3b promoter regions was increased in IBMX-treated preadipocytes. These results indicate that CRE in distal and proximal promoter regions and activation of CREB proteins play a crucial role in transcriptional regulation of Pde3b expression during preadipocyte differentiation.


Scientific Reports | 2016

Phosphodiesterase 3B (PDE3B) regulates NLRP3 inflammasome in adipose tissue.

Faiyaz Ahmad; Youn Wook Chung; Yan Tang; Steven Hockman; Shiwei Liu; Yusuf Khan; Kevin Huo; Eric M. Billings; Marcelo Amar; Alan T. Remaley; Vincent C. Manganiello

Activation of inflammation in white adipose tissue (WAT), includes infiltration/expansion of WAT macrophages, contributes pathogenesis of obesity, insulin resistance, and metabolic syndrome. The inflammasome comprises an intracellular sensor (NLR), caspase-1 and the adaptor ASC. Inflammasome activation leads to maturation of caspase-1 and processing of IL1β, contributing to many metabolic disorders and directing adipocytes to a more insulin-resistant phenotype. Ablation of PDE3B in WAT prevents inflammasome activation by reducing expression of NLRP3, caspase-1, ASC, AIM2, TNFα, IL1β and proinflammatory genes. Following IP injection of lipopolysaccharide (LPS), serum levels of IL1β and TNFα were reduced in PDE3B−/−mice compared to WT. Activation of signaling cascades, which mediate inflammasome responses, were modulated in PDE3B−/−mice WAT, including smad, NFAT, NFkB, and MAP kinases. Moreover, expression of chemokine CCL2, MCP-1 and its receptor CCR2, which play an important role in macrophage chemotaxis, were reduced in WAT of PDE3B−/−mice. In addition, atherosclerotic plaque formation was significantly reduced in the aorta of apoE−/−/PDE3B−/−and LDL-R−/−/PDE3B−/−mice compared to apoE−/−and LDL-R−/−mice, respectively. Obesity-induced changes in serum-cholesterol were blocked in PDE3B−/−mice. Collectively, these data establish a role for PDE3B in modulating inflammatory response, which may contribute to a reduced inflammatory state in adipose tissue.

Collaboration


Dive into the Steven Hockman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Faiyaz Ahmad

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Youn Wook Chung

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dong Keun Rhee

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Elizabeth Murphy

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Junhui Sun

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sunhee Park

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Weixing Shen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Young Hun Choi

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge