Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven J. Berg is active.

Publication


Featured researches published by Steven J. Berg.


Ground Water | 2013

Field Study of Subsurface Heterogeneity with Steady-State Hydraulic Tomography

Steven J. Berg; Walter A. Illman

Remediation of subsurface contamination requires an understanding of the contaminant (history, source location, plume extent and concentration, etc.), and, knowledge of the spatial distribution of hydraulic conductivity (K) that governs groundwater flow and solute transport. Many methods exist for characterizing K heterogeneity, but most if not all methods require the collection of a large number of small-scale data and its interpolation. In this study, we conduct a hydraulic tomography survey at a highly heterogeneous glaciofluvial deposit at the North Campus Research Site (NCRS) located at the University of Waterloo, Waterloo, Ontario, Canada to sequentially interpret four pumping tests using the steady-state form of the Sequential Successive Linear Estimator (SSLE) (Yeh and Liu 2000). The resulting three-dimensional (3D) K distribution (or K-tomogram) is compared against: (1) K distributions obtained through the inverse modeling of individual pumping tests using SSLE, and (2) effective hydraulic conductivity (K(eff) ) estimates obtained by automatically calibrating a groundwater flow model while treating the medium to be homogeneous. Such a K(eff) is often used for designing remediation operations, and thus is used as the basis for comparison with the K-tomogram. Our results clearly show that hydraulic tomography is superior to the inversions of single pumping tests or K(eff) estimates. This is particularly significant for contaminated sites where an accurate representation of the flow field is critical for simulating contaminant transport and injection of chemical and biological agents used for active remediation of contaminant source zones and plumes.


Environmental Science & Technology | 2010

Hydraulic/partitioning tracer tomography for DNAPL source zone characterization: small-scale sandbox experiments.

Walter A. Illman; Steven J. Berg; Xiaoyi Liu; Antonio Massi

Dense nonaqueous phase liquids (DNAPL) are prevalent at a large number of sites throughout the world. The variable release history, unstable flow, and geologic heterogeneity make the spatial distribution of DNAPLs complex. This causes difficulties in site remediation contributing to long-term groundwater contamination for decades to centuries. We present laboratory experiments to demonstrate the efficacy of Sequential Successive Linear Estimator (SSLE) algorithm that images DNAPL source zones. The algorithm relies on the fusion of hydraulic and partitioning tracer tomography (HPTT) to derive the best estimate of the K heterogeneity, DNAPL saturation (S(N)) distribution, and their uncertainty. The approach is nondestructive and can be applied repeatedly. Results from our laboratory experiments show that S(N) distributions compare favorably with DNAPL distributions observed in the sandbox but not so with local saturation estimates from core samples. We also found that the delineation of K heterogeneity can have a large impact on computed S(N) distributions emphasizing the importance of accurate delineation of hydraulic heterogeneity.


Ground Water | 2012

Comparison of Approaches for Predicting Solute Transport: Sandbox Experiments

Walter A. Illman; Steven J. Berg; Tian Chyi J Yeh

The main purpose of this paper was to compare three approaches for predicting solute transport. The approaches include: (1) an effective parameter/macrodispersion approach (Gelhar and Axness 1983); (2) a heterogeneous approach using ordinary kriging based on core samples; and (3) a heterogeneous approach based on hydraulic tomography. We conducted our comparison in a heterogeneous sandbox aquifer. The aquifer was first characterized by taking 48 core samples to obtain local-scale hydraulic conductivity (K). The spatial statistics of these K values were then used to calculate the effective parameters. These K values and their statistics were also used for kriging to obtain a heterogeneous K field. In parallel, we performed a hydraulic tomography survey using hydraulic tests conducted in a dipole fashion with the drawdown data analyzed using the sequential successive linear estimator code (Yeh and Liu 2000) to obtain a K distribution (or K tomogram). The effective parameters and the heterogeneous K fields from kriging and hydraulic tomography were used in forward simulations of a dipole conservative tracer test. The simulated and observed breakthrough curves and their temporal moments were compared. Results show an improvement in predictions of drawdown behavior and tracer transport when the K tomogram from hydraulic tomography was used. This suggests that the high-resolution prediction of solute transport is possible without collecting a large number of small-scale samples to estimate flow and transport properties that are costly to obtain at the field scale.


Ground Water | 2010

Studies of Water Velocity in the Capillary Fringe: The Point Velocity Probe

Steven J. Berg; Robert W. Gillham

The point velocity probe (PVP) is a device that can measure groundwater velocity at the centimeter scale, and unlike devices that measure velocity within well screens, the PVP operates while in direct contact with the porous medium. Because of this feature, it was postulated that the PVP could be effective in measuring velocity within the capillary fringe. This hypothesis was tested using a laboratory flow-through cell filled with a medium-fine sand from Canadian Forces Base Borden. The cell was constructed to simulate conditions such that the PVP was positioned from 2.5 cm below the water table to 79 cm above the water table. As the water table was lowered, the PVP gave highly consistent values of velocity over the range equivalent to 2.5 cm below the water table to 44 cm above the water table, the approximate extent of the capillary fringe. The average measured velocity was 11.3 cm/d +/- 11.6%, somewhat higher than that calculated based on the measured discharge through the cell (7.5 cm/d +/- 5.5%). With a further decline in the water table there was a progressive decrease in the measured velocity values, consistent with the declining hydraulic conductivity as the sand material drained. Readings could not be made beyond about 57 cm, where the water content was approximately 75% of saturation. These experiments showed that the PVP is capable of measuring groundwater velocity within the saturated zone above the water table and possibly into the unsaturated zone. Currently, this is the only instrument available with this capability.


Water Resources Research | 2015

Should hydraulic tomography data be interpreted using geostatistical inverse modeling? A laboratory sandbox investigation

Walter A. Illman; Steven J. Berg; Zhanfeng Zhao

The robust performance of hydraulic tomography (HT) based on geostatistics has been demonstrated through numerous synthetic, laboratory, and field studies. While geostatistical inverse methods offer many advantages, one key disadvantage is its highly parameterized nature, which renders it computationally intensive for large-scale problems. Another issue is that geostatistics-based HT may produce overly smooth images of subsurface heterogeneity when there are few monitoring interval data. Therefore, some may question the utility of the geostatistical inversion approach in certain situations and seek alternative approaches. To investigate these issues, we simultaneously calibrated different groundwater models with varying subsurface conceptualizations and parameter resolutions using a laboratory sandbox aquifer. The compared models included: (1) isotropic and anisotropic effective parameter models; (2) a heterogeneous model that faithfully represents the geological features; and (3) a heterogeneous model based on geostatistical inverse modeling. The performance of these models was assessed by quantitatively examining the results from model calibration and validation. Calibration data consisted of steady state drawdown data from eight pumping tests and validation data consisted of data from 16 separate pumping tests not used in the calibration effort. Results revealed that the geostatistical inversion approach performed the best among the approaches compared, although the geological model that faithfully represented stratigraphy came a close second. In addition, when the number of pumping tests available for inverse modeling was small, the geological modeling approach yielded more robust validation results. This suggests that better knowledge of stratigraphy obtained via geophysics or other means may contribute to improved results for HT.


Ground Water | 2011

Estimating Hydraulic Parameters When Poroelastic Effects Are Significant

Steven J. Berg; Paul A. Hsieh; Walter A. Illman

For almost 80 years, deformation-induced head changes caused by poroelastic effects have been observed during pumping tests in multilayered aquifer-aquitard systems. As water in the aquifer is released from compressive storage during pumping, the aquifer is deformed both in the horizontal and vertical directions. This deformation in the pumped aquifer causes deformation in the adjacent layers, resulting in changes in pore pressure that may produce drawdown curves that differ significantly from those predicted by traditional groundwater theory. Although these deformation-induced head changes have been analyzed in several studies by poroelasticity theory, there are at present no practical guidelines for the interpretation of pumping test data influenced by these effects. To investigate the impact that poroelastic effects during pumping tests have on the estimation of hydraulic parameters, we generate synthetic data for three different aquifer-aquitard settings using a poroelasticity model, and then analyze the synthetic data using type curves and parameter estimation techniques, both of which are based on traditional groundwater theory and do not account for poroelastic effects. Results show that even when poroelastic effects result in significant deformation-induced head changes, it is possible to obtain reasonable estimates of hydraulic parameters using methods based on traditional groundwater theory, as long as pumping is sufficiently long so that deformation-induced effects have largely dissipated.


Water Resources Research | 2015

Validation of hydraulic tomography in an unconfined aquifer: A controlled sandbox study

Zhanfeng Zhao; Walter A. Illman; Tian Chyi J Yeh; Steven J. Berg; Deqiang Mao

In this study, we demonstrate the effectiveness of hydraulic tomography (HT) that considers variably saturated flow processes in mapping the heterogeneity of both the saturated and unsaturated zones in a laboratory unconfined aquifer. The successive linear estimator (SLE) developed by Mao et al. (2013c) for interpreting HT in unconfined aquifers is utilized to obtain tomograms of hydraulic conductivity (K), specific storage (Ss), and the unsaturated zone parameters (pore size parameter (α) and saturated water content (θs)) for the Gardner-Russos model. The estimated tomograms are first evaluated by visually comparing them with stratigraphy visible in the sandbox. Results reveal that the HT analysis is able to accurately capture the location and extent of heterogeneity including high and low K layers within the saturated and unsaturated zones, as well as reasonable distribution patterns of α and θs for the Gardner-Russos model. We then validate the estimated tomograms through predictions of drawdown responses of pumping tests not used during the inverse modeling effort. The strong agreement between simulated and observed drawdown curves obtained by pressure transducers and tensiometers demonstrates the robust performance of HT that considers variably saturated flow processes in unconfined aquifers and the unsaturated zone above it. In addition, compared to the case using the homogeneous assumption, HT results, as expected, yield significantly better predictions of drawdowns in both the saturated and unsaturated zones. This comparison further substantiates the unbiased and minimal variance of HT analysis with the SLE algorithm.


Hydrological Processes | 2018

Understanding the water balance paradox in the Athabasca River Basin, Canada

Hyoun-Tae Hwang; Young-Jin Park; Edward A. Sudicky; Steven J. Berg; Robert McLaughlin; Jon P. Jones

Aquanty, Inc., 564 Weber Street North, Waterloo, Ontario, Canada Department of Earth and Environmental Sciences, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada Suncor Energy Inc., 150 6 Avenue SW, Calgary, Alberta, Canada Correspondence Hyoun‐Tae Hwang, Aquanty, Inc., 564 Weber Street North, Waterloo, Ontario, Canada. Email: [email protected] Funding information Suncor Energy Inc.


Water Resources Research | 2011

Three‐dimensional transient hydraulic tomography in a highly heterogeneous glaciofluvial aquifer‐aquitard system

Steven J. Berg; Walter A. Illman


Water Resources Research | 2011

Capturing aquifer heterogeneity: Comparison of approaches through controlled sandbox experiments

Steven J. Berg; Walter A. Illman

Collaboration


Dive into the Steven J. Berg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deqiang Mao

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar

Ken Ando

Obayashi Corporation

View shared research outputs
Researchain Logo
Decentralizing Knowledge