Steven J. Forrester
Temple University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Steven J. Forrester.
Annual Review of Pharmacology and Toxicology | 2016
Steven J. Forrester; Tatsuo Kawai; Shannon O'Brien; Walter G. Thomas; Raymond C. Harris; Satoru Eguchi
Epidermal growth factor receptor (EGFR) activation impacts the physiology and pathophysiology of the cardiovascular system, and inhibition of EGFR activity is emerging as a potential therapeutic strategy to treat diseases including hypertension, cardiac hypertrophy, renal fibrosis, and abdominal aortic aneurysm. The capacity of G protein-coupled receptor (GPCR) agonists, such as angiotensin II (AngII), to promote EGFR signaling is called transactivation and is well described, yet delineating the molecular processes and functional relevance of this crosstalk has been challenging. Moreover, these critical findings are dispersed among many different fields. The aim of our review is to highlight recent advancements in defining the signaling cascades and downstream consequences of EGFR transactivation in the cardiovascular renal system. We also focus on studies that link EGFR transactivation to animal models of the disease, and we discuss potential therapeutic applications.
Hypertension | 2015
Takehiko Takayanagi; Tatsuo Kawai; Steven J. Forrester; Takashi Obama; Toshiyuki Tsuji; Yamato Fukuda; Katherine J. Elliott; Douglas G. Tilley; Robin L. Davisson; Joon-Young Park; Satoru Eguchi
The mechanisms by which angiotensin II (AngII) elevates blood pressure and enhances end-organ damage seem to be distinct. However, the signal transduction cascade by which AngII specifically mediates vascular remodeling such as medial hypertrophy and perivascular fibrosis remains incomplete. We have previously shown that AngII-induced epidermal growth factor receptor (EGFR) transactivation is mediated by disintegrin and metalloproteinase domain 17 (ADAM17), and that this signaling is required for vascular smooth muscle cell hypertrophy but not for contractile signaling in response to AngII. Recent studies have implicated endoplasmic reticulum (ER) stress in hypertension. Interestingly, EGFR is capable of inducing ER stress. The aim of this study was to test the hypothesis that activation of EGFR and ER stress are critical components required for vascular remodeling but not hypertension induced by AngII. Mice were infused with AngII for 2 weeks with or without treatment of EGFR inhibitor, erlotinib, or ER chaperone, 4-phenylbutyrate. AngII infusion induced vascular medial hypertrophy in the heart, kidney and aorta, and perivascular fibrosis in heart and kidney, cardiac hypertrophy, and hypertension. Treatment with erlotinib as well as 4-phenylbutyrate attenuated vascular remodeling and cardiac hypertrophy but not hypertension. In addition, AngII infusion enhanced ADAM17 expression, EGFR activation, and ER/oxidative stress in the vasculature, which were diminished in both erlotinib-treated and 4-phenylbutyrate–treated mice. ADAM17 induction and EGFR activation by AngII in vascular cells were also prevented by inhibition of EGFR or ER stress. In conclusion, AngII induces vascular remodeling by EGFR activation and ER stress via a signaling mechanism involving ADAM17 induction independent of hypertension.
Clinical Science | 2015
Takashi Obama; Toshiyuki Tsuji; Tomonori Kobayashi; Yamato Fukuda; Takehiko Takayanagi; Yoshinori Taro; Tatsuo Kawai; Steven J. Forrester; Katherine J. Elliott; Eric T. Choi; Alan Daugherty; Victor Rizzo; Satoru Eguchi
Angiotensin II (Ang II) has been implicated in the development of abdominal aortic aneurysm (AAA). In vascular smooth muscle cells (VSMC), Ang II activates epidermal growth factor receptor (EGFR) mediating growth promotion. We hypothesized that inhibition of EGFR prevents Ang II-dependent AAA. C57BL/6 mice were co-treated with Ang II and β-aminopropionitrile (BAPN) to induce AAA with or without treatment with EGFR inhibitor, erlotinib. Without erlotinib, 64.3% of mice were dead due to aortic rupture. All surviving mice had AAA associated with EGFR activation. Erlotinib-treated mice did not die and developed far fewer AAA. The maximum diameters of abdominal aortas were significantly shorter with erlotinib treatment. In contrast, both erlotinib-treated and non-treated mice developed hypertension. The erlotinib treatment of abdominal aorta was associated with lack of EGFR activation, endoplasmic reticulum (ER) stress, oxidative stress, interleukin-6 induction and matrix deposition. EGFR activation in AAA was also observed in humans. In conclusion, EGFR inhibition appears to protect mice from AAA formation induced by Ang II plus BAPN. The mechanism seems to involve suppression of vascular EGFR and ER stress.
Hypertension | 2016
Takehiko Takayanagi; Steven J. Forrester; Tatsuo Kawai; Takashi Obama; Toshiyuki Tsuji; Katherine J. Elliott; Elisa Nuti; Armando Rossello; Hang Fai Kwok; Rosario Scalia; Victor Rizzo; Satoru Eguchi
Angiotensin II (AngII) has been strongly implicated in hypertension and its complications. Evidence suggests the mechanisms by which AngII elevates blood pressure and enhances cardiovascular remodeling and damage may be distinct. However, the signal transduction cascade by which AngII specifically initiates cardiovascular remodeling, such as hypertrophy and fibrosis, remains insufficiently understood. In vascular smooth muscle cells, a metalloproteinase ADAM17 mediates epidermal growth factor receptor transactivation, which may be responsible for cardiovascular remodeling but not hypertension induced by AngII. Thus, the objective of this study was to test the hypothesis that activation of vascular ADAM17 is indispensable for vascular remodeling but not for hypertension induced by AngII. Vascular ADAM17–deficient mice and control mice were infused with AngII for 2 weeks. Control mice infused with AngII showed cardiac hypertrophy, vascular medial hypertrophy, and perivascular fibrosis. These phenotypes were prevented in vascular ADAM17–deficient mice independent of blood pressure alteration. AngII infusion enhanced ADAM17 expression, epidermal growth factor receptor activation, and endoplasmic reticulum stress in the vasculature, which were diminished in ADAM17-deficient mice. Treatment with a human cross-reactive ADAM17 inhibitory antibody also prevented cardiovascular remodeling and endoplasmic reticulum stress but not hypertension in C57Bl/6 mice infused with AngII. In vitro data further supported these findings. In conclusion, vascular ADAM17 mediates AngII-induced cardiovascular remodeling via epidermal growth factor receptor activation independent of blood pressure regulation. ADAM17 seems to be a unique therapeutic target for the prevention of hypertensive complications.
Pharmacological Research | 2017
Tatsuo Kawai; Steven J. Forrester; Shannon O’Brien; Ariele Baggett; Victor Rizzo; Satoru Eguchi
&NA; The importance of the renin angiotensin aldosterone system in cardiovascular physiology and pathophysiology has been well described whereas the detailed molecular mechanisms remain elusive. The angiotensin II type 1 receptor (AT1 receptor) is one of the key players in the renin angiotensin aldosterone system. The AT1 receptor promotes various intracellular signaling pathways resulting in hypertension, endothelial dysfunction, vascular remodeling and end organ damage. Accumulating evidence shows the complex picture of AT1 receptor‐mediated signaling; AT1 receptor‐mediated heterotrimeric G protein‐dependent signaling, transactivation of growth factor receptors, NADPH oxidase and ROS signaling, G protein‐independent signaling, including the &bgr;‐arrestin signals and interaction with several AT1 receptor interacting proteins. In addition, there is functional cross‐talk between the AT1 receptor signaling pathway and other signaling pathways. In this review, we will summarize an up to date overview of essential AT1 receptor signaling events and their functional significances in the cardiovascular system.
Hypertension | 2017
Steven J. Forrester; Katherine J. Elliott; Tatsuo Kawai; Takashi Obama; Michael J. Boyer; Kyle Preston; Zhen Yan; Satoru Eguchi; Victor Rizzo
It has been proposed that membrane microdomains, caveolae, in vascular cells are critical for signal transduction and downstream functions induced by angiotensin II (AngII). We have tested our hypothesis that caveolin-1 (Cav1), a major structural protein of vascular caveolae, plays a critical role in the development of vascular remodeling by AngII via regulation of epidermal growth factor receptor and vascular endothelial adhesion molecule-1. Cav1−/− and control Cav+/+ mice were infused with AngII for 2 weeks to induce vascular remodeling and hypertension. On AngII infusion, histological assessments demonstrated medial hypertrophy and perivascular fibrosis of aorta and coronary and renal arteries in Cav1+/+ mice compared with sham-operated Cav1+/+ mice. AngII-infused Cav1+/+ mice also showed a phenotype of cardiac hypertrophy with increased heart weight to body weight ratio compared with control Cav1+/+ mice. In contrast, Cav1−/− mice infused with AngII showed attenuation of vascular remodeling but not cardiac hypertrophy. Similar levels of AngII-induced hypertension were found in both Cav1+/+ and Cav1−/− mice as assessed by telemetry. In Cav1+/+ mice, AngII enhanced tyrosine-phosphorylated epidermal growth factor receptor staining in the aorta, which was attenuated in Cav1−/− mice infused with AngII. Enhanced Cav1 and vascular endothelial adhesion molecule-1 expression was also observed in aorta from AngII-infused Cav1+/+ mice but not in Cav1−/− aorta. Experiments with vascular cells further provided a potential mechanism for our in vivo findings. These data suggest that Cav1, and presumably caveolae, in vascular smooth muscle and the endothelium plays a critical role in vascular remodeling and inflammation independent of blood pressure or cardiac hypertrophy regulation.
PLOS ONE | 2015
Patrick Osei-Owusu; Elizabeth A. Owens; Li Jie; Janaina S. Reis; Steven J. Forrester; Tatsuo Kawai; Satoru Eguchi; Harpreet Singh; Kendall J. Blumer
Regulator of G protein signaling 2 (RGS2) controls G protein coupled receptor (GPCR) signaling by acting as a GTPase-activating protein for heterotrimeric G proteins. Certain Rgs2 gene mutations have been linked to human hypertension. Renal RGS2 deficiency is sufficient to cause hypertension in mice; however, the pathological mechanisms are unknown. Here we determined how the loss of RGS2 affects renal function. We examined renal hemodynamics and tubular function by monitoring renal blood flow (RBF), glomerular filtration rate (GFR), epithelial sodium channel (ENaC) expression and localization, and pressure natriuresis in wild type (WT) and RGS2 null (RGS2-/-) mice. Pressure natriuresis was determined by stepwise increases in renal perfusion pressure (RPP) and blood flow, or by systemic blockade of nitric oxide synthase with L-NG-Nitroarginine methyl ester (L-NAME). Baseline GFR was markedly decreased in RGS2-/- mice compared to WT controls (5.0 ± 0.8 vs. 2.5 ± 0.1 μl/min/g body weight, p<0.01). RBF was reduced (35.4 ± 3.6 vs. 29.1 ± 2.1 μl/min/g body weight, p=0.08) while renal vascular resistance (RVR; 2.1 ± 0.2 vs. 3.0 ± 0.2 mmHg/μl/min/g body weight, p<0.01) was elevated in RGS2-/- compared to WT mice. RGS2 deficiency caused decreased sensitivity and magnitude of changes in RVR and RBF after a step increase in RPP. The acute pressure–natriuresis curve was shifted rightward in RGS2-/- relative to WT mice. Sodium excretion rate following increased RPP by L-NAME was markedly decreased in RGS2-/- mice and accompanied by increased translocation of ENaC to the luminal wall. We conclude that RGS2 deficiency impairs renal function and autoregulation by increasing renal vascular resistance and reducing renal blood flow. These changes impair renal sodium handling by favoring sodium retention. The findings provide a new line of evidence for renal dysfunction as a primary cause of hypertension.
Physiological Reviews | 2018
Steven J. Forrester; George W. Booz; Curt D. Sigmund; Thomas M. Coffman; Tatsuo Kawai; Victor Rizzo; Rosario Scalia; Satoru Eguchi
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Hypertension | 2017
Tatsuo Kawai; Takehiko Takayanagi; Steven J. Forrester; Kyle Preston; Takashi Obama; Toshiyuki Tsuji; Tomonori Kobayashi; Michael J. Boyer; Hannah A. Cooper; Hang Fai Kwok; Tomoki Hashimoto; Rosario Scalia; Victor Rizzo; Satoru Eguchi
Angiotensin II (AngII)-activated epidermal growth factor receptor (EGFR) has been implicated in abdominal aortic aneurysm (AAA) development. In vascular smooth muscle cells (VSMC), AngII activates EGFR via a metalloproteinase, a disintegrin and metallopeptidase domain 17 (ADAM17). We hypothesized that AngII-dependent AAA development would be prevented in mice lacking ADAM17 in VSMCs. To test this concept, control and VSMC ADAM17 deficient mice were co-treated with AngII and a lysyl oxidase inhibitor, β-aminopropionitrile, to induce AAA. We found that 52.4% of control mice did not survive due to aortic rupture. All other surviving control mice developed AAA and demonstrated enhanced expression of ADAM17 in the AAA lesions. In contrast, all AngII and β-aminopropionitrile-treated VSMC ADAM17 deficient mice survived and showed reduction in external/internal diameters (51%/28%, respectively). VSMC ADAM17 deficiency was associated with lack of EGFR activation, interleukin-6 induction, ER/oxidative stress and matrix deposition in the abdominal aorta of treated mice. However, both VSMC ADAM17 deficient and control mice treated with AngII and β-aminopropionitrile developed comparable levels of hypertension. Treatment of C57Bl/6 mice with an ADAM17 inhibitory antibody but not with control IgG also prevented AAA development. In conclusion, VSMC ADAM17 silencing or systemic ADAM17 inhibition appears to protect mice from AAA formation. The mechanism appears to involve suppression of EGFR activation.Angiotensin II (AngII)–activated epidermal growth factor receptor has been implicated in abdominal aortic aneurysm (AAA) development. In vascular smooth muscle cells (VSMCs), AngII activates epidermal growth factor receptor via a metalloproteinase, ADAM17 (a disintegrin and metalloproteinase domain 17). We hypothesized that AngII-dependent AAA development would be prevented in mice lacking ADAM17 in VSMCs. To test this concept, control and VSMC ADAM17-deficient mice were cotreated with AngII and a lysyl oxidase inhibitor, &bgr;-aminopropionitrile, to induce AAA. We found that 52.4% of control mice did not survive because of aortic rupture. All other surviving control mice developed AAA and demonstrated enhanced expression of ADAM17 in the AAA lesions. In contrast, all AngII and &bgr;-aminopropionitrile-treated VSMC ADAM17-deficient mice survived and showed reduction in external/internal diameters (51%/28%, respectively). VSMC ADAM17 deficiency was associated with lack of epidermal growth factor receptor activation, interleukin-6 induction, endoplasmic reticulum/oxidative stress, and matrix deposition in the abdominal aorta of treated mice. However, both VSMC ADAM17-deficient and control mice treated with AngII and &bgr;-aminopropionitrile developed comparable levels of hypertension. Treatment of C57Bl/6 mice with an ADAM17 inhibitory antibody but not with control IgG also prevented AAA development. In conclusion, VSMC ADAM17 silencing or systemic ADAM17 inhibition seems to protect mice from AAA formation. The mechanism seems to involve suppression of epidermal growth factor receptor activation.
Physiological Reports | 2014
Steven J. Forrester; Keisuke Kawata; Hojun Lee; Ji-Seok Kim; Kelly Sebzda; Tiffiny Butler; Vanessa R. Yingling; Joon-Young Park
Aging is associated with increasing incidence of osteoporosis; a skeletal disorder characterized by compromised bone strength that may predispose patients to an increased risk of fracture. It is imperative to identify novel ways in which to attenuate such declines in the functional properties of bone. The purpose of this study was to identify, through in silico, in vitro, and in vivo approaches, a protein secreted from skeletal muscle that is putatively involved in bone formation. We performed a functional annotation bioinformatic analysis of human skeletal muscle‐derived secretomes (n = 319) using DAVID software. Cross‐referencing was conducted using OMIM, Unigene, UniProt, GEO, and CGAP databases. Signal peptides and transmembrane residues were analyzed using SignalP and TMHMM software. To further investigate functionality of the identified protein, L6 and C2C12 myotubes were grown for in vitro analysis. C2C12 myotubes were subjected to 16 h of glucose deprivation (GD) prior to analysis. In vivo experiments included analysis of 6‐week calorie restricted (CR) rat muscle samples. Bioinformatic analysis yielded 15 genes of interest. GEO dataset analysis identified BMP5, COL1A2, CTGF, MGP, MMP2, and SPARC as potential targets for further processing. Following TMHMM and SignalP processing, CTGF was chosen as a candidate gene. CTGF expression level was increased during L6 myoblast differentiation (P < 0.01). C2C12 myotubes showed no change in response to GD. Rat soleus muscle samples exhibited an increase in CTGF expression (n = 16) in response to CR (35%) (P < 0.05). CTGF was identified as a skeletal muscle expressed protein through bioinformatic analysis of skeletal muscle‐derived secretomes and in vitro/in vivo analysis. Future study is needed to determine the role of muscle‐derived CTGF in bone formation and remodeling processes.