Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven J. Phipps is active.

Publication


Featured researches published by Steven J. Phipps.


Journal of Climate | 2012

Climate Drift in the CMIP3 Models

Alex Sen Gupta; Les Muir; Jaclyn N. Brown; Steven J. Phipps; Paul J. Durack; Didier Monselesan; Susan Wijffels

AbstractEven in the absence of external forcing, climate models often exhibit long-term trends that cannot be attributed to natural variability. This so-called climate drift arises for various reasons including the following: perturbations to the climate system on coupling component models together and deficiencies in model physics and numerics. When examining trends in historical or future climate simulations, it is important to know the error introduced by drift so that action can be taken where necessary. This study assesses the importance of drift for a number of climate properties at global and local scales. To illustrate this, the present paper focuses on simulated trends over the second half of the twentieth century. While drift in globally averaged surface properties is generally considerably smaller than observed and simulated twentieth-century trends, it can still introduce nontrivial errors in some models. Furthermore, errors become increasingly important at smaller scales. The direction of dri...


Journal of Climate | 2013

Paleoclimate Data-Model Comparison and the Role of Climate Forcings over the Past 1500 Years*

Steven J. Phipps; Helen V. McGregor; Joëlle Gergis; Ailie J. E. Gallant; Raphael Neukom; Samantha Stevenson; Duncan Ackerley; Josephine R. Brown; Matt J. Fischer; Tas D. van Ommen

The past 1500 years provide a valuable opportunity to study the response of the climate system to external forcings. However, the integration of paleoclimate proxies with climate modeling is critical to improving the understanding of climate dynamics. In this paper, a climate system model and proxy records are therefore used to study the role of natural and anthropogenic forcings in driving the global climate. The inverse and forward approaches to paleoclimate data–model comparison are applied, and sources of uncertainty are identified and discussed. In the first of two case studies, the climate model simulations are compared with multiproxy temperature reconstructions. Robust solar and volcanic signals are detected in Southern Hemisphere temperatures, with a possible volcanic signal detected in the Northern Hemisphere. The anthropogenic signal dominates during the industrial period. It is also found that seasonal and geographical biases may cause multiproxy reconstructions to overestimate the magnitude of the long-term preindustrial cooling trend. Inthesecondcasestudy,themodelsimulationsarecomparedwithacorald 18 OrecordfromthecentralPacific Ocean. It is found that greenhouse gases, solar irradiance, and volcanic eruptions all influence the mean state of the central Pacific, but there is no evidence that natural or anthropogenic forcings have any systematic impact on El Ni~ Oscillation. The proxy climate relationship is found to change over time, challenging the assumption of stationarity that underlies the interpretation of paleoclimate proxies. These case studies demonstrate the value of paleoclimate data–model comparison but also highlight the limitations of current techniques and demonstrate the need to develop alternative approaches.


Journal of Climate | 2013

Separating Forced from Chaotic Climate Variability over the Past Millennium

Andrew Schurer; Gabriele C. Hegerl; Michael E. Mann; Simon F. B. Tett; Steven J. Phipps

Reconstructions of past climate show notable temperature variability over the past millennium, with relatively warm conditions during the Medieval Climate Anomaly (MCA) and a relatively cold Little Ice Age (LIA). Multimodel simulations of the past millennium are used together with a wide range of reconstructions of Northern Hemispheric mean annual temperature to separate climate variability from 850 to 1950 CE into components attributable to external forcing and internal climate variability. External forcing is found to contribute significantly to long-term temperature variations irrespective of the proxy reconstruction, particularly from 1400 onward. Over the MCA alone, however, the effect of forcing is only detectable in about half of the reconstructions considered, and the response to forcing in the models cannot explain the warm conditions around 1000 CE seen in some reconstructions. The residual from the detection analysis is used to estimate internal variability independent from climate modeling, and it is found that the recent observed 50and100-yrhemispheric temperaturetrendsaresubstantiallylargerthananyoftheinternallygeneratedtrends even using the large residuals over the MCA. Variations in solar output and explosive volcanism are found to be the main drivers of climate change from 1400 to 1900, but for the first time a significant contribution from greenhouse gas variations to the cold conditions during 1600‐1800 is also detected. The proxy reconstructions tend to show a smaller forced response than is simulated by the models. This discrepancy is shown, at least partly, to be likely associated with the difference in the response to large volcanic eruptions between reconstructions and model simulations.


Journal of Climate | 2013

Nonstationary Australasian Teleconnections and Implications for Paleoclimate Reconstructions

Ailie J. E. Gallant; Steven J. Phipps; David J. Karoly; A. Brett Mullan; Andrew Lorrey

The stationarity of relationships between local and remote climates is a necessary, yet implicit, assumption underlying many paleoclimate reconstructions. However, the assumption is tenuous for many seasonal relationships between interannual variations in the El Ni~ Oscillation (ENSO) and the southern annular mode (SAM) and Australasian precipitation and mean temperatures. Nonstationary statistical relationships between local and remote climates on the 31‐71-yr time scale, defined as a change in their strength and/or phase outside that expected from local climate noise, are detected on near-centennial time scales from instrumental data, climate model simulations, and paleoclimate proxies. The relationships between ENSO and SAM and Australasian precipitation were nonstationary at 21%‐37% of Australasianstationsfrom1900to2009andstronglycovaried,suggestingcommonmodulation.Controlsimulations from three coupled climate models produce ENSO-like and SAM-like patterns of variability, but differ in detail to the observed patterns in Australasia. However, the model teleconnections also display nonstationarity, in some cases for over 50% of the domain. Therefore, nonstationary local‐remote climatic relationships are inherent in environments regulated by internal variability. The assessments using paleoclimate reconstructions are not robust because of extraneous noise associated with the paleoclimate proxies. Instrumental records provide the only means of calibratingand evaluating regional paleoclimate reconstructions. However, the length of Australasian instrumental observations may be too short to capture the near-centennialscale variations in local‐remote climatic relationships, potentially compromising these reconstructions. The uncertainty surrounding nonstationary teleconnections must be acknowledged and quantified. This should include interpreting nonstationarities in paleoclimate reconstructions using physically based frameworks.


Scientific Data | 2017

A global multiproxy database for temperature reconstructions of the Common Era

Julien Emile-Geay; Nicholas P. McKay; Darrell S. Kaufman; Lucien von Gunten; Jianghao Wang; Nerilie J. Abram; Jason A. Addison; Mark A. J. Curran; Michael N. Evans; Benjamin J. Henley; Zhixin Hao; Belen Martrat; Helen V. McGregor; Raphael Neukom; Gregory T. Pederson; Barbara Stenni; Kaustubh Thirumalai; Johannes P. Werner; Chenxi Xu; Dmitry Divine; Bronwyn C. Dixon; Joëlle Gergis; Ignacio A. Mundo; Takeshi Nakatsuka; Steven J. Phipps; Cody C. Routson; Eric J. Steig; Jessica E. Tierney; Jonathan J. Tyler; Kathryn Allen

Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental regions and major ocean basins. The records are from trees, ice, sediment, corals, speleothems, documentary evidence, and other archives. They range in length from 50 to 2000 years, with a median of 547 years, while temporal resolution ranges from biweekly to centennial. Nearly half of the proxy time series are significantly correlated with HadCRUT4.2 surface temperature over the period 1850–2014. Global temperature composites show a remarkable degree of coherence between high- and low-resolution archives, with broadly similar patterns across archive types, terrestrial versus marine locations, and screening criteria. The database is suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python.


Climate Dynamics | 2014

A reconstruction of extratropical Indo-Pacific sea-level pressure patterns during the Medieval Climate Anomaly

Ian D. Goodwin; Stuart Browning; Andrew Lorrey; Paul Andrew Mayewski; Steven J. Phipps; Nancy A. N. Bertler; Ross Edwards; Tim J Cohen; Tas D. van Ommen; Mark A. J. Curran; Cameron Barr; J. Curt Stager

AbstractSubtropical and extratropical proxy records of wind field, sea level pressure (SLP), temperature and hydrological anomalies from South Africa, Australia/New Zealand, Patagonian South America and Antarctica were used to reconstruct the Indo-Pacific extratropical southern hemisphere sea-level pressure anomaly (SLPa) fields for the Medieval Climate Anomaly (MCA ~700–1350 CE) and transition to the Little Ice Age (LIA 1350–1450 CE). The multivariate array of proxy data were simultaneously evaluated against global climate model output in order to identify climate state analogues that are most consistent with the majority of proxy data. The mean SLP and SLP anomaly patterns derived from these analogues illustrate the evolution of low frequency changes in the extratropics. The Indo-Pacific extratropical mean climate state was dominated by a strong tropical interaction with Antarctica emanating from: (1) the eastern Indian and south-west Pacific regions prior to 1100 CE, then, (2) the eastern Pacific evolving to the central Pacific La Niña-like pattern interacting with a +ve SAM to 1300 CE. A relatively abrupt shift to –ve SAM and the central Pacific El Niño-like pattern occurred at ~1300. A poleward (equatorward) shift in the subtropical ridge occurred during the MCA (MCA–LIA transition). The Hadley Cell expansion in the Australian and Southwest Pacific, region together with the poleward shift of the zonal westerlies is contemporaneous with previously reported Hadley Cell expansion in the North Pacific and Atlantic regions, and suggests that bipolar climate symmetry was a feature of the MCA.


Nature Geoscience | 2013

Continental-Scale Temperature Variability during the Past Two Millennia: Supplementary Information

Moinuddin Ahmed; Brendan M. Buckley; M. Braida; H.P. Borgaonkar; Asfawossen Asrat; Edward R. Cook; Ulf Büntgen; Brian M. Chase; Duncan A. Christie; Mark A. J. Curran; Henry F. Diaz; Jan Esper; Ze-Xin Fan; Narayan P. Gaire; Quansheng Ge; Joëlle Gergis; J. Fidel Gonzalez-Rouco; Hugues Goosse; Stefan W. Grab; Nicholas E. Graham; Rochelle Graham; Martin Grosjean; Sami Hanhijärvi; Darrell S. Kaufman; Thorsten Kiefer; Katsuhiko Kimura; Atte Korhola; Paul J. Krusic; Antonio Lara; Anne-Marie Lézine

Past global climate changes had strong regional expression. To elucidate their spatio-temporal pattern, we reconstructed past temperatures for seven continental-scale regions during the past one to two millennia. The most coherent feature in nearly all of the regional temperature reconstructions is a long-term cooling trend, which ended late in the nineteenth century. At multi-decadal to centennial scales, temperature variability shows distinctly different regional patterns, with more similarity within each hemisphere than between them. There were no globally synchronous multi-decadal warm or cold intervals that define a worldwide Medieval Warm Period or Little Ice Age, but all reconstructions show generally cold conditions between ad 1580 and 1880, punctuated in some regions by warm decades during the eighteenth century. The transition to these colder conditions occurred earlier in the Arctic, Europe and Asia than in North America or the Southern Hemisphere regions. Recent warming reversed the long-term cooling; during the period ad 1971–2000, the area-weighted average reconstructed temperature was higher than any other time in nearly 1,400 years.


Journal of Climate | 2011

The Role of the Indonesian Throughflow on ENSO Dynamics in a Coupled Climate Model

Agus Santoso; Wenju Cai; Matthew H. England; Steven J. Phipps

Abstract The effects of the Indonesian Throughflow (ITF) on ENSO dynamics are studied in a coupled climate model by comparing two simulations, one with an open ITF and the other with a closed ITF. Closing the ITF results in an El Nino–like climate state in the Pacific, which is characterized by weakened trade winds, a flatter equatorial thermocline, and weaker equatorial upwelling. A weakened South Equatorial Current allows the western Pacific warm pool to extend eastward, thereby reducing the zonal temperature gradient along the equator. The interdecadal component of the ENSO-like variability collapses, although the interannual variability is maintained. The core region of the ENSO SST anomalies becomes confined farther east. This results from Bjerknes feedback processes that are shifted eastward. This study conducts an analysis utilizing the Bjerknes coupled stability index as formulated by Jin et al. and finds that the relative importance of the thermocline feedback is enhanced in the closed ITF experi...


Climate Dynamics | 2015

Weighting climate model ensembles for mean and variance estimates

Ned Haughton; Gab Abramowitz; A. J. Pitman; Steven J. Phipps

Projections based on climate model ensembles commonly assume that each individual model simulation is of equal value. When combining simulations to estimate the mean and variance of quantities of interest, they are typically unweighted. Exceptions to this approach usually fall into two categories. First, ensembles may be pared down by removing either poorly performing model simulations or model simulations that are perceived to add little additional information, typically where multiple simulations have come from the same model. Second, weighting methodologies, usually based on model performance differences, may be applied, and lead to some improvement in the projected mean. Here we compare the effect of three different weighting techniques—simple averaging, performance based weighting, and weighting that accounts for model dependence—on three ensembles generated by different approaches to model perturbation. We examine the effect of each weighting technique on both the ensemble mean and variance. For comparison, we also consider the effect on the CMIP5 ensemble. While performance weighting is shown to improve the estimate of the mean, it does not appear to improve estimates of ensemble variance, and may in fact degrade them. In contrast, the model independence weighting approach appears to improve both the ensemble mean and the variance in all ensembles.


Earth’s Future | 2015

Sensitivity of the Southern Ocean to enhanced regional Antarctic ice sheet meltwater input

Christopher J. Fogwill; Steven J. Phipps; Chris S. M. Turney; Nicholas R. Golledge

Despite advances in our understanding of the processes driving contemporary sea level rise, the stability of the Antarctic ice sheets and their contribution to sea level under projected future warming remains uncertain due to the influence of strong ice-climate feedbacks. Disentangling these feedbacks is key to reducing uncertainty. Here we present a series of climate system model simulations that explore the potential effects of increased West Antarctic Ice Sheet (WAIS) meltwater flux on Southern Ocean dynamics. We project future changes driven by sectors of the WAIS, delivering spatially and temporally variable meltwater flux into the Amundsen, Ross, and Weddell embayments over future centuries. Focusing on the Amundsen Sea sector of the WAIS over the next 200 years, we demonstrate that the enhanced meltwater flux rapidly stratifies surface waters, resulting in a significant decrease in the rate of Antarctic Bottom Water (AABW) formation. This triggers rapid pervasive ocean warming (>1°C) at depth due to advection from the original site(s) of meltwater input. The greatest warming is predicted along sectors of the ice sheet that are highly sensitized to ocean forcing, creating a feedback loop that could enhance basal ice shelf melting and grounding line retreat. Given that we do not include the effects of rising CO2—predicted to further reduce AABW formation—our experiments highlight the urgent need to develop a new generation of fully coupled ice sheet climate models, which include feedback mechanisms such as this, to reduce uncertainty in climate and sea level projections.

Collaboration


Dive into the Steven J. Phipps's collaboration.

Top Co-Authors

Avatar

Andrew Lorrey

National Institute of Water and Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nerilie J. Abram

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jl Roberts

Australian Antarctic Division

View shared research outputs
Top Co-Authors

Avatar

A. J. Pitman

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Chris S. M. Turney

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hugues Goosse

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Gab Abramowitz

University of New South Wales

View shared research outputs
Researchain Logo
Decentralizing Knowledge