Steven J. Portugal
Royal Holloway, University of London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Steven J. Portugal.
Nature | 2014
Steven J. Portugal; Tatjana Y. Hubel; Johannes Fritz; Stefanie Heese; Daniela Trobe; Bernhard Voelkl; Stephen Hailes; Alan Wilson; James R. Usherwood
Many species travel in highly organized groups. The most quoted function of these configurations is to reduce energy expenditure and enhance locomotor performance of individuals in the assemblage. The distinctive V formation of bird flocks has long intrigued researchers and continues to attract both scientific and popular attention. The well-held belief is that such aggregations give an energetic benefit for those birds that are flying behind and to one side of another bird through using the regions of upwash generated by the wings of the preceding bird, although a definitive account of the aerodynamic implications of these formations has remained elusive. Here we show that individuals of northern bald ibises (Geronticus eremita) flying in a V flock position themselves in aerodynamically optimum positions, in that they agree with theoretical aerodynamic predictions. Furthermore, we demonstrate that birds show wingtip path coherence when flying in V positions, flapping spatially in phase and thus enabling upwash capture to be maximized throughout the entire flap cycle. In contrast, when birds fly immediately behind another bird—in a streamwise position—there is no wingtip path coherence; the wing-beats are in spatial anti-phase. This could potentially reduce the adverse effects of downwash for the following bird. These aerodynamic accomplishments were previously not thought possible for birds because of the complex flight dynamics and sensory feedback that would be required to perform such a feat. We conclude that the intricate mechanisms involved in V formation flight indicate awareness of the spatial wake structures of nearby flock-mates, and remarkable ability either to sense or predict it. We suggest that birds in V formation have phasing strategies to cope with the dynamic wakes produced by flapping wings.
The Journal of Experimental Biology | 2007
Steven J. Portugal; Jonathan A. Green; P. J. Butler
SUMMARY Many different physiological changes have been observed in wild waterfowl during the flightless stage of wing moult, including a loss of body mass. We aimed to determine whether captive barnacle geese (Branta leucopsis) would show the characteristic decrease in body mass during their wing moult, even though they had unlimited and unrestricted access to food. Fourteen captive geese were weighed at 1–2-week intervals for two complete years. During the flightless period of the moult, body mass decreased by approximately 25% from the pre-moult value. To understand the basis of this change, the rate of oxygen consumption was measured during daytime and nighttime at six points in the second year, and at three points (before, during and after wing moult) behavioural observations were made. Measurements of the rate of oxygen consumption showed an 80% increase above that of the nonmoulting periods of the year. We propose that metabolism was increased during moult because of the cost of feather synthesis. Although food was available, the captive birds chose not to forage and instead increased the proportion of time spent resting. It is likely that this behaviour in response to wing moult is a strategy to avoid predation in the wild. Thus, the innate nature of this behaviour has potential survival value for wild birds of this species. We conclude that the increase in metabolism led to the use of endogenous energy reserves because the birds reduced rather than increased their food intake rates, and as a result, the barnacle geese lost body mass during wing moult.
The Journal of Experimental Biology | 2013
Craig R. White; Phillip Cassey; Natalie G. Schimpf; Lewis G. Halsey; Jonathan A. Green; Steven J. Portugal
SUMMARY Animal-borne logging or telemetry devices are widely used for measurements of physiological and movement data from free-living animals. For such measurements to be relevant, however, it is essential that the devices themselves do not affect the data of interest. A recent meta-analysis reported an overall negative effect of these devices on the birds that bear them, i.e. on nesting productivity, clutch size, nest initiation date, offspring quality, body condition, flying ability, foraging behaviours, energy expenditure and survival rate. Method of attachment (harness, collar, glue, anchor, implant, breast-mounted or tailmount) had no influence on the strength of these effects but anchored and implanted transmitters had the highest reported rates of device-induced mortality. Furthermore, external devices, but not internal devices, caused an increase in ‘device-induced behaviour’ (comfort behaviours such as preening, fluffing and stretching, and unrest activities including unquantifiable ‘active’ behaviours). These findings suggest that, with the exception of device-induced behaviour, external attachment is preferable to implantation. In the present study we undertake a meta-analysis of 183 estimates of device impact from 39 studies of 36 species of bird designed to explicitly compare the effects of externally attached and surgically implanted devices on a range of traits, including condition, energy expenditure and reproduction. In contrast to a previous study, we demonstrate that externally attached devices have a consistent detrimental effect (i.e. negative influences on body condition, reproduction, metabolism and survival), whereas implanted devices have no consistent effect. We also show that the magnitude of the negative effect of externally attached devices decreases with time. We therefore conclude that device implantation is preferable to external attachment, providing that the risk of mortality associated with the anaesthesia and surgery required for implantation can be mitigated. We recommend that studies employing external devices use devices that can be borne for long periods, and, wherever possible, deploy devices in advance of the time period of interest.
PLOS ONE | 2010
Phillip Cassey; Steven J. Portugal; Golo Maurer; John G. Ewen; Rebecca L. Boulton; Mark E. Hauber; Tim M. Blackburn
Background The exceptional diversity of coloration found in avian eggshells has long fascinated biologists and inspired a broad range of adaptive hypotheses to explain its evolution. Three main impediments to understanding the variability of eggshell appearance are: (1) the reliable quantification of the variation in eggshell colours; (2) its perception by birds themselves, and (3) its relation to avian phylogeny. Here we use an extensive museum collection to address these problems directly, and to test how diversity in eggshell coloration is distributed among different phylogenetic levels of the class Aves. Methodology and Results Spectrophotometric data on eggshell coloration were collected from a taxonomically representative sample of 251 bird species to determine the change in reflectance across different wavelengths and the taxonomic level where the variation resides. As many hypotheses for the evolution of eggshell coloration assume that egg colours provide a communication signal for an avian receiver, we also modelled reflectance spectra of shell coloration for the avian visual system. We found that a majority of species have eggs with similar background colour (long wavelengths) but that striking differences are just as likely to occur between congeners as between members of different families. The region of greatest variability in eggshell colour among closely related species coincided with the medium-wavelength sensitive region around 500 nm. Conclusions The majority of bird species share similar background eggshell colours, while the greatest variability among species aligns with differences along a red-brown to blue axis that most likely corresponds with variation in the presence and concentration of two tetrapyrrole pigments responsible for eggshell coloration. Additionally, our results confirm previous findings of temporal changes in museum collections, and this will be of particular concern for studies testing intraspecific hypotheses relating temporal patterns to adaptation of eggshell colour. We suggest that future studies investigating the phylogenetic association between the composition and concentration of eggshell pigments, and between the evolutionary drivers and functional impacts of eggshell colour variability will be most rewarding.
Physiological and Biochemical Zoology | 2006
Craig R. White; Steven J. Portugal; Graham R. Martin; P. J. Butler
Respirometry is a standard technique in comparative physiology laboratories, with measurements of rates of O2 consumption and CO2 production available for hundreds of species. A common recommendation when carrying out respirometry is that water vapor be removed from the air stream before entering the analyzer. Often, this is accomplished with the use of chemical desiccants, such as Drierite. However, here we show that Drierite has an affinity for CO2 when new and completely anhydrous, and therefore it has an adverse effect on the washout characteristics of this gas. Exposing the Drierite to room air reduces this CO2 affinity, and a 2‐min exposure at 20°C and 50% relative humidity is sufficient to reduce the 99% washout time by almost a factor of 4, at the cost of only a 5% reduction in water vapor capacity. When Drierite is exhausted and then recharged according to the manufacturer’s instructions, the CO2 affinity is further reduced, and washout times are less than 60% greater than when no desiccant is used.
Trends in Ecology and Evolution | 2016
Dora Biro; Takao Sasaki; Steven J. Portugal
The field of collective animal behaviour examines how relatively simple, local interactions between individuals in groups combine to produce global-level outcomes. Existing mathematical models and empirical work have identified candidate mechanisms for numerous collective phenomena but have typically focused on one-off or short-term performance. We argue that feedback between collective performance and learning - giving the former the capacity to become an adaptive, and potentially cumulative, process - is a currently poorly explored but crucial mechanism in understanding collective systems. We synthesise material ranging from swarm intelligence in social insects through collective movements in vertebrates to collective decision making in animal and human groups, to propose avenues for future research to identify the potential for changes in these systems to accumulate over time.
The Journal of Experimental Biology | 2009
Steven J. Portugal; Susannah K. S. Thorpe; Jonathan A. Green; Julia P. Myatt; P. J. Butler
SUMMARY Previous studies on wild moulting waterfowl have demonstrated that flight and leg muscles experience periods of hypertrophy and atrophy. This is thought to be in response to the change in use of the locomotor muscles as described in the use/disuse hypothesis. We tested this hypothesis using captive barnacle geese. Forty geese were dissected before, during and after wing moult, to determine the changes in mass and functional capacity of the flight and leg muscles. Physiological cross sectional areas (PCSA) and mean fascicle lengths of functional muscle groups were calculated to ascertain the force-producing capabilities of the flight and leg muscles. At the onset of moult, flight muscle mass was at a minimum, having atrophied by 35% compared with pre-moult levels, but it returned to pre-moult levels by the end of wing moult. By contrast, the leg muscles hypertrophied during wing moult by 29%, and the PCSA of individual muscle groups increased substantially. Increases in mass, PCSA and fascicle length of individual leg muscle groups during moult suggest that, when flightless, the leg muscles are functionally adapted to provide greater force and/or manoeuvrability to the birds, to aid ground-based escape from predators. Through studying captive animals that are unable to fly, it has been possible to conclude that the major changes in leg and flight muscle in moulting captive geese cannot be explained through use or disuse. Instead, changes seem to be compensatory or to occur in anticipation of changes in locomotor patterns.
Functional Ecology | 2015
Golo Maurer; Steven J. Portugal; Mark E. Hauber; Ivan Mikšík; Douglas Russell; Phillip Cassey
Summary 1. The avian embryo’s development is influenced by both the amount and the wavelength of the light that passes through the eggshell. Commercial poultry breeders use light of specific wavelengths to accelerate embryonic growth, yet the effects of the variably patterned eggshells of wild bird species on light transmission and embryonic development remain largely unexplored. 2. Here, we provide the first comparative phylogenetic analysis of light transmission, through a diverse range of bird eggshells (74 British breeding species), in relation to the eggshell’s thickness, permeability, pigment concentration and surface reflectance spectrum (colour). 3. The percentage of light transmitted through the eggshell was measured in the spectral range 250–700 nm. Our quantitative analyses confirm anecdotal reports that eggshells filter the light of the externally coloured shell. Specifically, we detected a positive relationship between surface eggshell reflectance (‘brightness’) and the percentage of light transmitted through the eggshell, and this relationship was strongest at wavelengths in the human-visible blue-green region of the spectra (c. 435 nm). 4. We show that less light passes through thicker eggshells with greater total pigment concentrations. By contrast, permeability (measured as water vapour conductance) did not covary significantly with light transmission. Eggs of closed-nesting species let more light pass through, compared with open nesters. 5. We postulate that greater light transmission is required to assist embryonic development under low light exposure. Importantly, this result provides an ecological explanation for the repeated evolution of immaculate, white- or pale-coloured eggshells in species nesting in enclosed spaces. 6. Finally, we detected correlative support for the solar radiation hypothesis, in that eggshells of bird species with a longer incubation period let significantly less of the potentially harmful, ultraviolet (UV) light pass through the eggshell. In summary, we demonstrate suites of avian eggshell properties, including eggshell structure and pigmentation, which are consistent with an evolutionary pressure to both enhance and protect embryonic development.
Journal of Ornithology | 2010
Steven J. Portugal; Rhian Isaac; Kate L. Quinton; S. James Reynolds
Many different behavioural changes have been observed in wild waterfowl during the flightless stage of wing moult with birds frequently becoming inactive and reducing time spent foraging. Increased predation risk, elevated energetic demands of feather re-growth and restriction of foraging opportunities are thought to underlie these changes. By studying captive populations of both a dabbling and a diving duck species at the same site, we determined whether captive birds would reflect the behavioural responses of wild waterfowl to moult. The time-budgets of 42 Common Eiders, Somateria mollissima, (a diving duck) and 18 Garganeys, Anas querquedula, (a dabbling duck) were recorded during wing moult (July–August) and non-moult (January) with behaviour recorded under six categories. Despite captivity providing a low predation risk and constant access to food, birds altered their behaviour during the flightless period of wing moult. Time allocated to foraging and locomotion decreased significantly during moult compared to non-moult periods, while resting time increased significantly. Moulting Eiders underwent a greater reduction in time spent foraging and in locomotion compared with Garganeys, which is likely to be in response to a higher energetic cost of foraging in Eiders. It is possible that increased resting in both diving and dabbling ducks reduces their likelihood of detection by predators, while allowing them to remain vigilant. We demonstrate that there is much potential for using captive animals in studies that can augment our knowledge of behaviours of free-living conspecifics, the former being a hitherto under-exploited resource.
The Journal of Experimental Biology | 2009
Steven J. Portugal; Jonathan A. Green; Phillip Cassey; Peter B. Frappell; P. J. Butler
SUMMARY Quantifying a relationship between heart rate (fH) and rate of oxygen consumption (V̇O2) allows the estimation of V̇O2 from fH recordings in free-ranging birds. It has been proposed that this relationship may vary throughout an animals annual cycle, due to changes in physiological status. Barnacle geese, Branta leucopsis, provide an ideal model to test this hypothesis, as they exhibit significant intra-annual variability in body mass, body composition and abdominal temperature, even in captivity. Heart rate data loggers were implanted in 14 captive barnacle geese, and at six points in the year the relationship between fH and V̇O2 was determined. The fH/V̇O2 relationship was also determined in seven moulting wild barnacle geese to examine whether relationships from captive animals might be applicable to wild animals. In captive barnacle geese, the fH/V̇O2 relationship was significantly different only between two out of the six periods when the relationship was determined (late September–early October and November). Accounting for changes in physiological parameters such as body mass, body composition and abdominal temperature did not eliminate this difference. The relationship between fH and V̇O2 obtained from wild geese was significantly different from all of the relationships derived from the captive geese, suggesting that it is not possible to apply calibrations from captive birds to wild geese. However, the similarity of the fH and V̇O2 relationship derived during moult in the captive geese to those during the remainder of the annual cycle implies it is not unreasonable to assume that the relationship between fH/V̇O2 during moult in the wild geese is indicative of the relationship throughout the remainder of the annual cycle.