Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven J. Rothstein is active.

Publication


Featured researches published by Steven J. Rothstein.


The Plant Cell | 2006

Tung Tree DGAT1 and DGAT2 Have Nonredundant Functions in Triacylglycerol Biosynthesis and Are Localized to Different Subdomains of the Endoplasmic Reticulum

Jay M. Shockey; Satinder K. Gidda; Dorselyn C. Chapital; Jui-Chang Kuan; Preetinder K. Dhanoa; John M. Bland; Steven J. Rothstein; Robert T. Mullen; John M. Dyer

Seeds of the tung tree (Vernicia fordii) produce large quantities of triacylglycerols (TAGs) containing ∼80% eleostearic acid, an unusual conjugated fatty acid. We present a comparative analysis of the genetic, functional, and cellular properties of tung type 1 and type 2 diacylglycerol acyltransferases (DGAT1 and DGAT2), two unrelated enzymes that catalyze the committed step in TAG biosynthesis. We show that both enzymes are encoded by single genes and that DGAT1 is expressed at similar levels in various organs, whereas DGAT2 is strongly induced in developing seeds at the onset of oil biosynthesis. Expression of DGAT1 and DGAT2 in yeast produced different types and proportions of TAGs containing eleostearic acid, with DGAT2 possessing an enhanced propensity for the synthesis of trieleostearin, the main component of tung oil. Both DGAT1 and DGAT2 are located in distinct, dynamic regions of the endoplasmic reticulum (ER), and surprisingly, these regions do not overlap. Furthermore, although both DGAT1 and DGAT2 contain a similar C-terminal pentapeptide ER retrieval motif, this motif alone is not sufficient for their localization to specific regions of the ER. These data suggest that DGAT1 and DGAT2 have nonredundant functions in plants and that the production of storage oils, including those containing unusual fatty acids, occurs in distinct ER subdomains.


Journal of Experimental Botany | 2011

Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency

Surya Kant; Yong-Mei Bi; Steven J. Rothstein

Development of genetic varieties with improved nitrogen use efficiency (NUE) is essential for sustainable agriculture. Generally, NUE can be divided into two parts. First, assimilation efficiency involves nitrogen (N) uptake and assimilation and second utilization efficiency involves N remobilization. Understanding the mechanisms regulating these processes is crucial for the improvement of NUE in crop plants. One important approach is to develop an understanding of the plant response to different N regimes, especially to N limitation, using various methods including transcription profiling, analysing mutants defective in their normal response to N limitation, and studying plants that show better growth under N-limiting conditions. One can then attempt to improve NUE in crop plants using the knowledge gained from these studies. There are several potential genetic and molecular approaches for the improvement of crop NUE discussed in this review. Increased knowledge of how plants respond to different N levels as well as to other environmental conditions is required to achieve this.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Heat induces the splicing by IRE1 of a mRNA encoding a transcription factor involved in the unfolded protein response in Arabidopsis

Yan Deng; Sabrina Humbert; Jian-Xiang Liu; Renu Srivastava; Steven J. Rothstein; Stephen H. Howell

Adverse environmental conditions produce endoplasmic reticulum (ER) stress in plants. In response to heat or ER stress agents, Arabidopsis seedlings mitigate stress damage by activating ER-associated transcription factors and a RNA splicing factor, IRE1b. IRE1b splices the mRNA-encoding bZIP60, a basic leucine-zipper domain containing transcription factor associated with the unfolded protein response in plants. bZIP60 is required for the up-regulation of BINDING PROTEIN3 (BIP3) in response to ER stress, and loss-of-function mutations in IRE1b or point mutations in the splicing site of bZIP60 mRNA are defective in BIP3 induction. These findings demonstrate that bZIP60 in plants is activated by RNA splicing and afford opportunities for monitoring and modulating stress responses in plants.


The Plant Cell | 1992

The S-locus receptor kinase gene in a self-incompatible Brassica napus line encodes a functional serine/threonine kinase

Daphne R. Goring; Steven J. Rothstein

An S-receptor kinase (SRK) cDNA, SRK-910, from the active S-locus in a self-incompatible Brassica napus W1 line has been isolated and characterized. The SRK-910 gene is predominantly expressed in pistils and segregates with the W1 self-incompatibility phenotype in an F2 population derived from a cross between the self-incompatible W1 line and a self-compatible Westar line. Analysis of the predicted amino acid sequence demonstrated that the extracellular receptor domain is highly homologous to S-locus glycoproteins, whereas the cytoplasmic kinase domain contains conserved amino acids present in serine/threonine kinases. An SRK-910 kinase protein fusion was produced in Escherichia coli and found to contain kinase activity. Phosphoamino acid analysis confirmed that only serine and threonine residues were phosphorylated. Thus, the SRK-910 gene encodes a functional serine/threonine receptor kinase.


PLOS Genetics | 2011

Genetic Regulation by NLA and MicroRNA827 for Maintaining Nitrate-Dependent Phosphate Homeostasis in Arabidopsis

Surya Kant; Mingsheng Peng; Steven J. Rothstein

Plants need abundant nitrogen and phosphorus for higher yield. Improving plant genetics for higher nitrogen and phosphorus use efficiency would save potentially billions of dollars annually on fertilizers and reduce global environmental pollution. This will require knowledge of molecular regulators for maintaining homeostasis of these nutrients in plants. Previously, we reported that the NITROGEN LIMITATION ADAPTATION (NLA) gene is involved in adaptive responses to low-nitrogen conditions in Arabidopsis, where nla mutant plants display abrupt early senescence. To understand the molecular mechanisms underlying NLA function, two suppressors of the nla mutation were isolated that recover the nla mutant phenotype to wild type. Map-based cloning identified these suppressors as the phosphate (Pi) transport-related genes PHF1 and PHT1.1. In addition, NLA expression is shown to be regulated by the low-Pi induced microRNA miR827. Pi analysis revealed that the early senescence in nla mutant plants was due to Pi toxicity. These plants accumulated over five times the normal Pi content in shoots specifically under low nitrate and high Pi but not under high nitrate conditions. Also the Pi overaccumulator pho2 mutant shows Pi toxicity in a nitrate-dependent manner similar to the nla mutant. Further, the nitrate and Pi levels are shown to have an antagonistic crosstalk as displayed by their differential effects on flowering time. The results demonstrate that NLA and miR827 have pivotal roles in regulating Pi homeostasis in plants in a nitrate-dependent fashion.


Plant Journal | 2009

Arabidopsis homolog of the yeast TREX-2 mRNA export complex: components and anchoring nucleoporin.

Qing Lu; Xurong Tang; Gang Tian; Fang Wang; Kede Liu; Vi Nguyen; Susanne E. Kohalmi; Wilfred A. Keller; Edward W. T. Tsang; John J. Harada; Steven J. Rothstein; Yuhai Cui

Nuclear pore complexes (NPCs) are vital to nuclear-cytoplasmic communication in eukaryotes. The yeast NPC-associated TREX-2 complex, also known as the Thp1-Sac3-Cdc31-Sus1 complex, is anchored on the NPC via the nucleoporin Nup1, and is essential for mRNA export. Here we report the identification and characterization of the putative Arabidopsis thaliana TREX-2 complex and its anchoring nucleoporin. Physical and functional evidence support the identification of the Arabidopsis orthologs of yeast Thp1 and Nup1. Of three Arabidopsis homologs of yeast Sac3, two are putative TREX-2 components, but, surprisingly, none are required for mRNA export as they are in yeast. Physical association of the two Cdc31 homologs, but not the Sus1 homolog, with the TREX-2 complex was observed. In addition to identification of these TREX-2 components, direct interactions of the Arabidopsis homolog of DSS1, which is an established proteasome component in yeast and animals, with both the TREX-2 complex and the proteasome were observed. This suggests the possibility of a link between the two complexes. Thus this work has identified the putative Arabidopsis TREX-2 complex and provides a foundation for future studies of nuclear export in Arabidopsis.


BMC Genomics | 2007

Global transcription profiling reveals differential responses to chronic nitrogen stress and putative nitrogen regulatory components in Arabidopsis

Yong-Mei Bi; Rong-Lin Wang; Tong Zhu; Steven J. Rothstein

BackgroundA large quantity of nitrogen (N) fertilizer is used for crop production to achieve high yields at a significant economic and environmental cost. Efforts have been directed to understanding the molecular basis of plant responses to N and identifying N-responsive genes in order to manipulate their expression, thus enabling plants to use N more efficiently. No studies have yet delineated these responses at the transcriptional level when plants are grown under chronic N stress and the understanding of regulatory elements involved in N response is very limited.ResultsTo further our understanding of the response of plants to varying N levels, a growth system was developed where N was the growth-limiting factor. An Arabidopsis whole genome microarray was used to evaluate global gene expression under different N conditions. Differentially expressed genes under mild or severe chronic N stress were identified. Mild N stress triggered only a small set of genes significantly different at the transcriptional level, which are largely involved in various stress responses. Plant responses were much more pronounced under severe N stress, involving a large number of genes in many different biological processes. Differentially expressed genes were also identified in response to short- and long-term N availability increases. Putative N regulatory elements were determined along with several previously known motifs involved in the responses to N and carbon availability as well as plant stress.ConclusionDifferentially expressed genes identified provide additional insights into the coordination of the complex N responses of plants and the components of the N response mechanism. Putative N regulatory elements were identified to reveal possible new components of the regulatory network for plant N responses. A better understanding of the complex regulatory network for plant N responses will help lead to strategies to improve N use efficiency.


Biochimica et Biophysica Acta | 2001

Self-aggregation characteristics of recombinantly expressed human elastin polypeptides.

C.M Bellingham; Kimberly A. Woodhouse; Paul Robson; Steven J. Rothstein; Fred W. Keeley

Elastin is an extracellular matrix protein found in tissues requiring extensibility and elastic recoil. Monomeric elastin has the ability to aggregate into fibrillar structures in vitro, and has been suggested to participate in the organization of its own assembly into a polymeric matrix in vivo. Although hydrophobic sequences in elastin have been suggested to be involved in this process of self-organization, the contributions of specific hydrophobic and crosslinking domains to the propensity of elastin to self-assemble have received less attention. We have used a series of defined, recombinant human elastin polypeptides to investigate the factors contributing to elastin self-assembly. In general, coacervation temperature of these polypeptides, used as a measure of their propensity to self-assemble, was influenced both by salt concentration and polypeptide concentration. In addition, hydrophobic domains appeared to be essential for the ability of these polypeptides to self-assemble. However, neither overall molecular mass, number of hydrophobic domains nor general hydropathy of the polypeptides provided a complete explanation for differences in coacervation temperature, suggesting that the specific nature of the sequences of these hydrophobic domains are an important determinant of the ability of elastin polypeptides to self-assemble.


Molecular Genetics and Genomics | 1988

Isolation of cDNA clones coding for spinach nitrite reductase: Complete sequence and nitrate induction

Eduard Back; William Burkhart; Mary Moyer; Laura Privalle; Steven J. Rothstein

SummaryThe main nitrogen source for most higher plants is soil nitrate. Prior to its incorporation into amino acids, plants reduce nitrate to ammonia in two enzymatic steps. Nitrate is reduced by nitrate reductase to nitrite, which is further reduced to ammonia by nitrite reductase. In this paper, the complete primary sequence of the precursor protein for spinach nitrite reductase has been deduced from cloned cDNAs. The cDNA clones were isolated from a nitrate-induced cDNA library in two ways: through the use of oligonucleotide probes based on partial amino acid sequences of nitrite reductase and through the use of antibodies raised against purified nitrite reductase. The precursor protein for nitrite reductase is 594 amino acids long and has a 32 amino acid extension at the N-terminal end of the mature protein. These 32 amino acids most likely serve as a transit peptide involved in directing this nuclearencoded protein into the chloroplast. The cDNA hybridizes to a 2.3 kb RNA whose steady-state level is markedly increased upon induction with nitrate.


Journal of Experimental Botany | 2008

Adaptation of Arabidopsis to nitrogen limitation involves induction of anthocyanin synthesis which is controlled by the NLA gene

Mingsheng Peng; Darryl Hudson; Andrew Schofield; Rong Tsao; Raymond Yang; Honglan Gu; Yong-Mei Bi; Steven J. Rothstein

Plants can survive a limiting nitrogen (N) supply by developing a set of N limitation adaptive responses. However, the Arabidopsis nla (nitrogen limitation adaptation) mutant fails to produce such responses, and cannot adapt to N limitation. In this study, the nla mutant was utilized to understand further the effect of NLA on Arabidopsis adaptation to N limitation. Grown with limiting N, the nla mutant could not accumulate anthocyanins and instead produced an N limitation-induced early senescence phenotype. In contrast, when supplied with limiting N and limiting phosphorus (Pi), the nla mutants accumulated abundant anthocyanins and did not show the N limitation-induced early senescence phenotype. These results support the hypothesis that Arabidopsis has a specific pathway to control N limitation-induced anthocyanin synthesis, and the nla mutation disrupts this pathway. However, the nla mutation does not affect the Pi limitation-induced anthocyanin synthesis pathway. Therefore, Pi limitation induced the nla mutant to accumulate anthocyanins under N limitation and allowed this mutant to adapt to N limitation. Under N limitation, the nla mutant had a significantly down-regulated expression of many genes functioning in anthocyanin synthesis, and an enhanced expression of genes involved in lignin production. Correspondingly, the nla mutant grown with limiting N showed a significantly lower production of anthocyanins (particularly cyanidins) and an increase in lignin contents compared with wild-type plants. These data suggest that NLA controls Arabidopsis adaptability to N limitation by channelling the phenylpropanoid metabolic flux to the induced anthocyanin synthesis, which is important for Arabidopsis to adapt to N limitation.

Collaboration


Dive into the Steven J. Rothstein's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tong Zhu

Research Triangle Park

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuhai Cui

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Xi Chen

Research Triangle Park

View shared research outputs
Researchain Logo
Decentralizing Knowledge