Steven J. Swoap
Williams College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Steven J. Swoap.
American Journal of Physiology-cell Physiology | 1999
Matthew T. Wheeler; Emily C. Snyder; Melissa N. Patterson; Steven J. Swoap
The myosin heavy chain (MHC) IIB gene is selectively expressed in skeletal muscles, imparting fast contractile kinetics. Why the MHC IIB gene product is expressed in muscles like the tibialis anterior (TA) and not expressed in muscles like the soleus is currently unclear. It is shown here that the mutation of an E-box within the MHC IIB promoter decreased reporter gene activity in the fast-twitch TA muscle 90-fold as compared with the wild-type promoter. Reporter gene expression within the TA required this E-box for activation of a heterologous construct containing upstream regulatory regions of the MHC IIB promoter linked to the basal 70-kDa heat shock protein TATA promoter. Electrophoretic mobility shift assays demonstrated that mutation of the E-box prevented the binding of both MyoD and myogenin to this element. In cotransfected C2C12myotubes and Hep G2 cells, MyoD preferentially activated the MHC IIB promoter in an E-box-dependent manner, whereas myogenin activated the MHC IIB promoter to a lesser extent, and in an E-box-independent manner. A time course analysis of hindlimb suspension demonstrated that the unweighted soleus muscle activated expression of MyoD mRNA before the de novo expression of MHC IIB mRNA. These data suggest a possible causative role for MyoD in the observed upregulation of MHC IIB in the unweighted soleus muscle.The myosin heavy chain (MHC) IIB gene is selectively expressed in skeletal muscles, imparting fast contractile kinetics. Why the MHC IIB gene product is expressed in muscles like the tibialis anterior (TA) and not expressed in muscles like the soleus is currently unclear. It is shown here that the mutation of an E-box within the MHC IIB promoter decreased reporter gene activity in the fast-twitch TA muscle 90-fold as compared with the wild-type promoter. Reporter gene expression within the TA required this E-box for activation of a heterologous construct containing upstream regulatory regions of the MHC IIB promoter linked to the basal 70-kDa heat shock protein TATA promoter. Electrophoretic mobility shift assays demonstrated that mutation of the E-box prevented the binding of both MyoD and myogenin to this element. In cotransfected C2C12 myotubes and Hep G2 cells, MyoD preferentially activated the MHC IIB promoter in an E-box-dependent manner, whereas myogenin activated the MHC IIB promoter to a lesser extent, and in an E-box-independent manner. A time course analysis of hindlimb suspension demonstrated that the unweighted soleus muscle activated expression of MyoD mRNA before the de novo expression of MHC IIB mRNA. These data suggest a possible causative role for MyoD in the observed upregulation of MHC IIB in the unweighted soleus muscle.
American Journal of Physiology-cell Physiology | 1998
Steven J. Swoap
The myosin heavy chain (MHC) IIB gene is preferentially expressed in fast-twitch muscles of the hindlimb, such as the tibialis anterior (TA). The molecular mechanism(s) for this preferential expression are unknown. The goals of the current study were 1) to determine whether the cloned region of the MHC IIB promoter contains the necessary cis-acting element(s) to drive fiber-type-specific expression of this gene in vivo, 2) to determine which region within the promoter is responsible for fiber-type-specific expression, and 3) to determine whether transcription off of the cloned region of the MHC IIB promoter accurately mimics endogenous gene expression in a muscle undergoing a fiber-type transition. To accomplish these goals, a 2.6-kilobase fragment of the promoter-enhancer region of the MHC IIB gene was cloned upstream of the firefly luciferase reporter gene and coinjected with pRL-cytomegalovirus (CMV) (CMV promoter driving the renilla luciferase reporter) into the TA and the slow soleus muscle. Firefly luciferase activity relative to renilla luciferase activity within the TA was 35-fold greater than within the soleus. Deletional analysis demonstrated that only the proximal 295 base pairs (pGL3IIB0.3) were required to maintain this muscle-fiber-type specificity. Reporter gene expression of pGL3IIB0.3 construct was significantly upregulated twofold in unweighted soleus muscles compared with normal soleus muscles. Thus the region within the proximal 295 base pairs of the MHC IIB gene contains at least one element that can drive fiber-type-specific expression of a reporter gene.The myosin heavy chain (MHC) IIB gene is preferentially expressed in fast-twitch muscles of the hindlimb, such as the tibialis anterior (TA). The molecular mechanism(s) for this preferential expression are unknown. The goals of the current study were 1) to determine whether the cloned region of the MHC IIB promoter contains the necessary cis-acting element(s) to drive fiber-type-specific expression of this gene in vivo, 2) to determine which region within the promoter is responsible for fiber-type-specific expression, and 3) to determine whether transcription off of the cloned region of the MHC IIB promoter accurately mimics endogenous gene expression in a muscle undergoing a fiber-type transition. To accomplish these goals, a 2.6-kilobase fragment of the promoter-enhancer region of the MHC IIB gene was cloned upstream of the firefly luciferase reporter gene and coinjected with pRL-cytomegalovirus (CMV) (CMV promoter driving the renilla luciferase reporter) into the TA and the slow soleus muscle. Firefly luciferase activity relative to renilla luciferase activity within the TA was 35-fold greater than within the soleus. Deletional analysis demonstrated that only the proximal 295 base pairs (pGL3IIB0.3) were required to maintain this muscle-fiber-type specificity. Reporter gene expression of pGL3IIB0.3 construct was significantly upregulated twofold in unweighted soleus muscles compared with normal soleus muscles. Thus the region within the proximal 295 base pairs of the MHC IIB gene contains at least one element that can drive fiber-type-specific expression of a reporter gene.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2009
Steven J. Swoap; Margaret Jean Gutilla
The laboratory mouse is a facultative daily heterotherm in that it experiences bouts of torpor under caloric restriction. Mice are the most frequently studied laboratory mammal, and often, genetically modified mice are used to investigate many physiological functions related to weight loss and caloric intake. As such, research documenting the cardiovascular changes during fasting-induced torpor in mice is warranted. In the current study, C57BL/6 mice were implanted either with EKG/temperature telemeters or blood pressure telemeters. Upon fasting and exposure to an ambient temperature (T(a)) of 19 degrees C, mice entered torpor bouts as assessed by core body temperature (T(b)). Core T(b) fell from 36.6 +/- 0.2 degrees C to a minimum of 25.9 +/- 0.9 degrees C during the fast, with a concomitant fall in heart rate from 607 +/- 12 beats per minute (bpm) to a minimum of 158 +/- 20 bpm. Below a core T(b) of 31 degrees C, heart rate fell exponentially with T(b), and the Q(10) was 2.61 +/- 0.18. Further, mice implanted with blood pressure telemeters exhibited similar heart rate and activity profiles as those implanted with EKG/temperature telemeters, and the fall in heart rate and core T(b) during entrance into torpor was paralleled by a fall in blood pressure. The minimum systolic, mean, and diastolic blood pressures of torpid mice were 62.3 +/- 10.2, 51.9 +/- 9.2, 41.0 +/- 7.5 mmHg, respectively. Torpid mice had a significantly lower heart rate (25-35%) than when euthermic at mean arterial pressures from 75 to 100 mmHg, suggesting that total peripheral resistance is elevated during torpor. These data provide new and significant insight into the cardiovascular adjustments that occur in torpid mice.
Biochemical Pharmacology | 2008
Steven J. Swoap
The ability to enter a hypometabolic state upon restriction of caloric intake is pivotal for animal survival: balancing the energy budget in endotherms can be a real struggle when food is not available and/or the demand for heat production to maintain homeothermy becomes excessive. Bouts of torpor, characterized by metabolic rates well below a basal metabolic rate and core body temperatures that may be just a few degrees above the ambient temperature, are utilized among many organisms across the animal kingdom, including those that could be described as typical laboratory animals, like the mouse or hamster. Daily heterotherms, which are the focus of this commentary, enter shallow torpor bouts and do so usually under acute food shortage conditions and a relatively cool environment. Due to their small size, the body temperature of these animals is very responsive to food deprivation, pharmacological inhibition of metabolic rate, and cardiovascular depressants. This commentary examines recent developments concerning the neuroendocrine mechanisms in place that may mediate fasting-induced torpor in daily heterotherms. Further this commentary highlights pharmacological induction of hypothermia in small mammals.
Journal of Cellular Physiology | 2012
Hjalmar R. Bouma; Esther M. Verhaag; Jessica P. Otis; Gerhard Heldmaier; Steven J. Swoap; Arjen M. Strijkstra; Robert H. Henning; Hannah V. Carey
Mammalian hibernation consists of periods of depressed metabolism and reduced body temperature called “torpor” that are interspersed by normothermic arousal periods. Numerous cellular processes are halted during torpor, including transcription, translation, and ion homeostasis. Hibernators are able to survive long periods of low blood flow and body temperature followed by rewarming and reperfusion without overt signs of organ injury, which makes these animals excellent models for application of natural protective mechanisms to human medicine. This review examines efforts to induce torpor‐like states in non‐hibernating species using pharmacological compounds. Elucidating the underlying mechanisms of natural and pharmacologically induced torpor will speed the development of new clinical approaches to treat a variety of trauma and stress states in humans. J. Cell. Physiol. 227: 1285–1290, 2012.
PLOS ONE | 2008
Steven J. Swoap; David Weinshenker
Some mammals, including laboratory mice, enter torpor in response to food deprivation, and leptin can attenuate these bouts of torpor. We previously showed that dopamine β-hydroxylase knockout (Dbh −/−) mice, which lack norepinephrine (NE), do not reduce circulating leptin upon fasting nor do they enter torpor. To test whether the onset of torpor in mice during a fast requires a NE-mediated reduction in circulating leptin, double mutant mice deficient in both leptin (ob/ob) and DBH (DBL MUT) were generated. Upon fasting, control and ob/ob mice entered torpor as assessed by telemetric core Tb acquisition. While fasting failed to induce torpor in Dbh −/− mice, leptin deficiency bypassed the requirement for NE, as DBL MUT mice readily entered torpor upon fasting. These data indicate that sympathetic activation of white fat and suppression of leptin is required for the onset of torpor in the mouse. Emergence from torpor was severely retarded in DBL MUT mice, revealing a novel, leptin-independent role for NE in torpor recovery. This phenotype was mimicked by administration of a β3 adrenergic receptor antagonist to control mice during a torpor bout. Hence, NE signaling via β3 adrenergic receptors presumably in brown fat is the first neurotransmitter-receptor system identified that is required for normal recovery from torpor.
The Journal of Neuroscience | 2006
Steven J. Swoap; Margaret Jean Gutilla; L. Cameron Liles; Ross Smith; David Weinshenker
Torpor, a controlled rapid drop in metabolic rate and body temperature (Tb), is a hypometabolic adaptation to stressful environmental conditions, which occurs in many small mammals, marsupials, and birds. To date, signaling pathways required for torpor have not been identified. We examined the role of the sympathetic nervous system (SNS) in mediating the torpor adaptation to fasting by telemetrically monitoring the Tb of dopamine β-hydroxylase knock-out (Dbh–/–) mice, which lack the ability to produce the SNS transmitters, norepinephrine (NE), and epinephrine. Control (Dbh+/–) mice readily reduced serum leptin levels and entered torpor after a fast in a cool environment. In contrast, Dbh–/– mice failed to reduce serum leptin and enter torpor under fasting conditions, whereas restoration of peripheral but not central NE lowered serum leptin levels and rescued the torpor response. Torpor was expressed in fasted Dbh–/– mice immediately after administration of either the nonselective β-adrenergic receptor agonist isoproterenol or the β3-adrenergic receptor (AR)-specific agonist CL 316243 [disodium (RR)-5-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]-amino]propyl]-1,3-benzodioxazole-2,2-dicarboxylate], but not after administration of β1, β2, or α1 agonists. Importantly, the β3-specific antagonist SR 59230A [3-(2-ethylphenoxy)-1-[(1,S)-1,2,3,4-tetrahydronapth-1-ylamino]-2S-2-propanol oxalate] severely blunted fasting-induced torpor in control mice, whereas other AR antagonists were ineffective. These results define a critical role of peripheral SNS activity at β3-AR-containing tissues in the torpor adaptation to limited energy availability and cool ambient temperature.
The FASEB Journal | 2009
Jared R. Mayers; Benjamin William Iliff; Steven J. Swoap
Dietary supplementation with resveratrol may produce calorie restriction‐like effects on metabolic and longevity endpoints in mice. In this study, we sought to determine whether resveratrol treatment elicited other hallmark changes associated with calorie restriction, namely bradycardia and decreased body temperature. We found that during shortterm treatment, wild‐type mice on a calorie‐restricted diet experienced significant decreases in both heart rate and body temperature after only 1 day whereas those receiving resveratrol exhibited no such change after 1 wk. We also used ob/ob mice to study the effects of long‐term treatment because previous studies had indicated the therapeutic value of resveratrol against the linked morbidities of obesity and diabetes. After 12 wk, resveratrol treatment had produced no changes in either heart rate or body temperature. Strikingly, and in contrast to previous findings, we found that resveratrol‐treated mice had significantly reduced endurance in a treadmill test. Quantitative reverse transcriptase‐polymerase chain reaction suggested that a proposed target of resveratrol, Sirt1, was activated in resveratrol‐treated ob/ob mice. Thus, we conclude that the bradycardia and hypothermia associated with calorie restriction occur through mechanisms unaffected by the actions of resveratrol and that further studies are needed to examine the differential effects of resveratrol in a leptin‐deficient background.—Mayers, J. R., Iliff, B. W., Swoap, S. J. Resveratrol treatment in mice does not elicit the bradycardia and hypothermia associated with calorie restriction. FASEB J. 23, 1032–1040 (2009)
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2012
Benjamin William Iliff; Steven J. Swoap
When calorically restricted at cool ambient temperatures, mice conserve energy by entering torpor, during which metabolic rate (MR), body temperature (T(b)), heart rate (HR), and locomotor activity (LMA) decrease. Treatment with exogenous adenosine produces a similar hypometabolic state. In this study, we conducted a series of experiments using the nonspecific adenosine receptor antagonists aminophylline and 8-sulfophenyltheophylline (8-SPT) to test the hypothesis that adenosine signaling is necessary for torpor in fasted mice. In the first experiment, mice were subcutaneously infused with aminophylline while T(b), HR, and LMA were continuously monitored using implanted radiotelemeters. During a 23-h fast, saline-treated mice were torpid for 518 ± 43 min, whereas aminophylline-treated mice were torpid for significantly less time (54 ± 20 min). In a second experiment, aminophylline was infused subcutaneously into torpid mice to test the role of adenosine in the maintenance of torpor. Aminophylline reversed the hypometabolism, hypothermia, bradycardia, and hypoactivity of torpor, whereas saline did not. In the third and fourth experiments, the polar adenosine antagonist 8-SPT, which does not cross the blood-brain barrier, was infused either subcutaneously or intracerebroventricularly to test the hypothesis that both peripheral and central adenosine receptor signaling are necessary for the maintenance of torpor. Intracerebroventricular, but not subcutaneous, infusion of 8-SPT causes a return to euthermia. These findings support the hypothesis that adenosine is necessary for torpor in mice and further suggest that whereas peripheral adenosine signaling is not necessary for the maintenance of torpor, antagonism of central adenosine is sufficient to disrupt torpor.
PLOS ONE | 2014
Erik J. Tillman; Donald A. Morgan; Kamal Rahmouni; Steven J. Swoap
High-fructose diets have been implicated in obesity via impairment of leptin signaling in humans and rodents. We investigated whether fructose-induced leptin resistance in mice could be used to study the metabolic consequences of fructose consumption in humans, particularly in children and adolescents. Male C57Bl/6 mice were weaned to a randomly assigned diet: high fructose, high sucrose, high fat, or control (sugar-free, low-fat). Mice were maintained on their diets for at least 14 weeks. While fructose-fed mice regularly consumed more kcal and expended more energy, there was no difference in body weight compared to control by the end of the study. Additionally, after 14 weeks, both fructose-fed and control mice displayed similar leptin sensitivity. Fructose-feeding also did not change circulating glucose, triglycerides, or free fatty acids. Though fructose has been linked to obesity in several animal models, our data fail to support a role for fructose intake through food lasting 3 months in altering of body weight and leptin signaling in mice. The lack of impact of fructose in the food of growing mice on either body weight or leptin sensitivity over this time frame was surprising, and important information for researchers interested in fructose and body weight regulation.