Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven James Moss is active.

Publication


Featured researches published by Steven James Moss.


Proceedings of the National Academy of Sciences of the United States of America | 2002

The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum

Tin-Wein Yu; Linquan Bai; Dorothee Clade; Dietmar Hoffmann; Sabine Toelzer; Khue Q. Trinh; Jun Xu; Steven James Moss; Eckhard Leistner; Heinz G. Floss

Maytansinoids are potent antitumor agents found in plants and microorganisms. To elucidate their biosynthesis at the biochemical and genetic level and to set the stage for their structure modification through genetic engineering, we have cloned two gene clusters required for the biosynthesis of the maytansinoid, ansamitocin, from a cosmid library of Actinosynnema pretiosum ssp. auranticum ATCC 31565. This is a rare case in which the genes involved in the formation of a secondary metabolite are dispersed in separate regions in an Actinomycete. A set of genes, asm22–24, asm43–45, and asm47, was identified for the biosynthesis of the starter unit, 3-amino-5-hydroxybenzoic acid (AHBA). Remarkably, there are two AHBA synthase gene homologues, which may have different functions in AHBA formation. Four type I polyketide synthase genes, asmA–D, followed by the downloading asm9, together encode eight homologous sets of enzyme activities (modules), each catalyzing a specific round of chain initiation, elongation, or termination steps, which assemble the ansamitocin polyketide backbone. Another set of genes, asm13–17, encodes the formation of an unusual “methoxymalonate” polyketide chain extension unit that, notably, seems to be synthesized on a dedicated acyl carrier protein rather than as a CoA thioester. Additional ORFs are involved in postsynthetic modifications of the initial polyketide synthase product, which include methylations, an epoxidation, an aromatic chlorination, and the introduction of acyl and carbamoyl groups. Tentative functions of several asm genes were confirmed by inactivation and heterologous expression.


Natural Product Reports | 2004

Loss of co-linearity by modular polyketide synthases: a mechanism for the evolution of chemical diversity

Steven James Moss; Christine J. Martin; Barrie Wilkinson

Modular polyketide synthases biosynthesise natural products through successive Claisen-type condensations, where one module is responsible for one round of chain extension. This review describes recent findings where this rule of co-linearity is broken, either by one module being bypassed (skipping) or through one module being used for multiple chain extension events (stuttering).


Proceedings of the National Academy of Sciences of the United States of America | 2011

Biosynthesis of the immunosuppressants FK506, FK520, and rapamycin involves a previously undescribed family of enzymes acting on chorismate

Jennifer N. Andexer; Steven Gary Kendrew; Mohammad Nur-e-Alam; Orestis Lazos; Teresa A. Foster; Anna-Sophie Zimmermann; Tony Warneck; Dipen Suthar; Nigel Coates; Frank E. Koehn; Jerauld Skotnicki; Guy T. Carter; Matthew Alan Gregory; Christine J. Martin; Steven James Moss; Peter F. Leadlay; Barrie Wilkinson

The macrocyclic polyketides FK506, FK520, and rapamycin are potent immunosuppressants that prevent T-cell proliferation through initial binding to the immunophilin FKBP12. Analogs of these molecules are of considerable interest as therapeutics in both metastatic and inflammatory disease. For these polyketides the starter unit for chain assembly is (4R,5R)-4,5-dihydroxycyclohex-1-enecarboxylic acid derived from the shikimate pathway. We show here that the first committed step in its formation is hydrolysis of chorismate to form (4R,5R)-4,5-dihydroxycyclohexa-1,5-dienecarboxylic acid. This chorismatase activity is encoded by fkbO in the FK506 and FK520 biosynthetic gene clusters, and by rapK in the rapamycin gene cluster of Streptomyces hygroscopicus. Purified recombinant FkbO (from FK520) efficiently catalyzed the chorismatase reaction in vitro, as judged by HPLC-MS and NMR analysis. Complementation using fkbO from either the FK506 or the FK520 gene cluster of a strain of S. hygroscopicus specifically deleted in rapK (BIOT-4010) restored rapamycin production, as did supplementation with (4R,5R)-4,5-dihydroxycyclohexa-1,5-dienecarboxylic acid. Although BIOT-4010 produced no rapamycin, it did produce low levels of BC325, a rapamycin analog containing a 3-hydroxybenzoate starter unit. This led us to identify the rapK homolog hyg5 as encoding a chorismatase/3-hydroxybenzoate synthase. Similar enzymes in other bacteria include the product of the bra8 gene from the pathway to the terpenoid natural product brasilicardin. Expression of either hyg5 or bra8 in BIOT-4010 led to increased levels of BC325. Also, purified Hyg5 catalyzed the predicted conversion of chorismate into 3-hydroxybenzoate. FkbO, RapK, Hyg5, and Bra8 are thus founder members of a previously unrecognized family of enzymes acting on chorismate.


Journal of Medicinal Chemistry | 2008

Optimizing natural products by biosynthetic engineering: Discovery of nonquinone Hsp90 inhibitors

Ming-Qiang Zhang; Sabine Gaisser; Mohammad Nur-e-Alam; Lesley S. Sheehan; William A. Vousden; Nikolaos Gaitatzis; Gerrard Peck; Nigel Coates; Steven James Moss; Markus Radzom; Teresa A. Foster; Rose M. Sheridan; Matthew Alan Gregory; Susan M Roe; Chrisostomos Prodromou; Laurence H. Pearl; Susan M Boyd; Barrie Wilkinson; Christine J. Martin

A biosynthetic medicinal chemistry approach was applied to the optimization of the natural product Hsp90 inhibitor macbecin. By genetic engineering, mutants have been created to produce novel macbecin analogues including a nonquinone compound (5) that has significantly improved binding affinity to Hsp90 (Kd 3 nM vs 240 nM for macbecin) and reduced toxicity (MTD > or = 250 mg/kg). Structural flexibility may contribute to the preorganization of 5 to exist in solution in the Hsp90-bound conformation.


Molecular Microbiology | 2004

Biosynthesis of the angiogenesis inhibitor borrelidin by Streptomyces parvulus Tü4055: insights into nitrile formation †

Carlos Olano; Steven James Moss; Alfredo F. Braña; Rose M. Sheridan; Vidya Math; Alison J. Weston; Carmen Méndez; Peter F. Leadlay; Barrie Wilkinson; José A. Salas

The 18‐membered polyketide macrolide borrelidin exhibits a number of important biological activities, including potent angiogenesis inhibition. This has prompted two recent total syntheses as well as the cloning of the biosynthetic gene cluster from Streptomyces parvulus Tü4055. Borrelidin possesses some unusual structural characteristics, including a cyclopentane carboxylic acid moiety at C17 and a nitrile moiety at C12 of the macrocyclic ring. Nitrile groups are relatively rare in nature, and little is known of their biosynthesis during secondary metabolism. The nitrile group of borrelidin is shown here to arise from the methyl group of a methylmalonyl‐CoA extender unit incorporated during polyketide chain extension. Insertional inactivation of two genes in the borrelidin gene cluster, borI (coding for a cytochrome P450 monooxygenase) and borJ (coding for an aminotransferase), generated borrelidin non‐producing mutants. These mutants accumulated different compounds lacking the C12 nitrile moiety, with the product of the borI‐minus mutant (12‐desnitrile‐12‐methyl‐borrelidin) possessing a methyl group and that of the borJ‐minus mutant (12‐desnitrile‐12‐carboxyl‐borrelidin) a carboxyl group at C12. The former but not the latter was converted into borrelidin when biotransformed by an S. parvulus mutant that is deficient in the biosynthesis of the borrelidin starter unit. This suggests that 12‐desnitrile‐12‐methyl‐borrelidin is a competent biosynthetic intermediate, whereas the carboxylated derivative is a shunt metabolite. Bioconversion of 12‐desnitrile‐12‐methyl‐borrelidin into borrelidin was also achieved in a heterologous system co‐expressing borI and borJ in Streptomyces albus J1074. This bioconversion was more efficient when borK, which is believed to encode a dehydrogenase, was simultaneously expressed with borI and borJ. On the basis of these findings, a pathway is proposed for the formation of the nitrile moiety during borrelidin biosynthesis.


Chemical Communications | 2003

Evidence from engineered gene fusions for the repeated use of a module in a modular polyketide synthase

Carlos Olano; Barrie Wilkinson; Steven James Moss; Alfredo F. Braña; Carmen Méndez; Peter F. Leadlay; José A. Salas

Functional evidence for programmed loss of co-linearity on the borrelidin modular polyketide synthase (PKS) is presented.


Applied and Environmental Microbiology | 2001

Isolation of an aldehyde dehydrogenase involved in the oxidation of fluoroacetaldehyde to fluoroacetate in Streptomyces cattleya.

Cormac D. Murphy; Steven James Moss; David O'Hagan

ABSTRACT Streptomyces cattleya is unusual in that it produces fluoroacetate and 4-fluorothreonine as secondary metabolites. We now report the isolation of an NAD+-dependent fluoroacetaldehyde dehydrogenase from S. cattleya that mediates the oxidation of fluoroacetaldehyde to fluoroacetate. This is the first enzyme to be identified that is directly involved in fluorometabolite biosynthesis. Production of the enzyme begins in late exponential growth and continues into the stationary phase. Measurement of kinetic parameters shows that the enzyme has a high affinity for fluoroacetaldehyde and glycoaldehyde, but not acetaldehyde.


Chemical Communications | 2006

Biosynthesis of the angiogenesis inhibitor borrelidin: directed biosynthesis of novel analogues

Steven James Moss; Isabelle Carletti; Carlos Olano; Rose M. Sheridan; Michael D. Ward; Vidya Math; Mohammad Nur-e-Alam; Alfredo F. Braña; Ming Qiang Zhang; Peter F. Leadlay; Carmen Méndez; José A. Salas; Barrie Wilkinson

We report the directed biosynthesis of borrelidin analogues and their selective anti-proliferative activity against human cancer cell lines.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Analogs of natural aminoacyl-tRNA synthetase inhibitors clear malaria in vivo

Eva Maria Novoa; Noelia Camacho; Anna Tor; Barrie Wilkinson; Steven James Moss; Patricia Marín-García; Isabel G. Azcárate; José M. Bautista; Adam C. Mirando; Christopher S. Francklyn; Sonia Varón; Miriam Royo; Alfred Cortés; Lluís Ribas de Pouplana

Significance Malaria remains one of the main health threats in the developing world, with staggering social and economic costs. Resistance to artemisins, the main pharmacological tool currently available against malaria, has been widely reported. Borrelidin, a natural compound that inhibits threonyl-tRNA synthetase, has long been studied for its antibacterial and antiparasitic properties, but undesirable toxic effects prevented its further clinical development. Here we present a group of borrelidin derivatives that retain their ability to inhibit Plasmodium threonyl-tRNA synthetase but not its human homolog. Furthermore, we demonstrate, for the first time to our knowledge, that these compounds are capable of effectively clearing a Plasmodium infection in animals, curing malaria with a potency equivalent to reference drugs such as chloroquine. Malaria remains a major global health problem. Emerging resistance to existing antimalarial drugs drives the search for new antimalarials, and protein translation is a promising pathway to target. Here we explore the potential of the aminoacyl-tRNA synthetase (ARS) family as a source of antimalarial drug targets. First, a battery of known and novel ARS inhibitors was tested against Plasmodium falciparum cultures, and their activities were compared. Borrelidin, a natural inhibitor of threonyl-tRNA synthetase (ThrRS), stands out for its potent antimalarial effect. However, it also inhibits human ThrRS and is highly toxic to human cells. To circumvent this problem, we tested a library of bioengineered and semisynthetic borrelidin analogs for their antimalarial activity and toxicity. We found that some analogs effectively lose their toxicity against human cells while retaining a potent antiparasitic activity both in vitro and in vivo and cleared malaria from Plasmodium yoelii-infected mice, resulting in 100% mice survival rates. Our work identifies borrelidin analogs as potent, selective, and unexplored scaffolds that efficiently clear malaria both in vitro and in vivo.


Antimicrobial Agents and Chemotherapy | 2011

Preclinical Characterization of Naturally Occurring Polyketide Cyclophilin Inhibitors from the Sanglifehrin Family

Matthew Alan Gregory; Michael Bobardt; Susan Obeid; Udayan Chatterji; Nigel Coates; Teresa A. Foster; Philippe Gallay; Pieter Leyssen; Steven James Moss; Johan Neyts; Mohammad Nur-e-Alam; Jan Paeshuyse; Mahmood Piraee; Dipen Suthar; Tony Warneck; Ming-Qiang Zhang; Barrie Wilkinson

ABSTRACT Cyclophilin inhibitors currently in clinical trials for hepatitis C virus (HCV) are all analogues of cyclosporine (CsA). Sanglifehrins are a group of naturally occurring cyclophilin binding polyketides that are structurally distinct from the cyclosporines and are produced by a microorganism amenable to biosynthetic engineering for lead optimization and large-scale production by fermentation. Preclinical characterization of the potential utility of this class of compounds for the treatment of HCV revealed that the natural sanglifehrins A to D are all more potent than CsA at disrupting formation of the NS5A-CypA, -CypB, and -CypD complexes and at inhibition of CypA, CypB, and CypD isomerase activity. In particular, sanglifehrin B (SfB) was 30- to 50-fold more potent at inhibiting the isomerase activity of all Cyps tested than CsA and was also shown to be a more potent inhibitor of the 1b subgenomic replicon (50% effective concentrations [EC50s] of 0.070 μM and 0.16 μM in Huh 5-2 and Huh 9-13 cells, respectively). Physicochemical and mouse pharmacokinetic analyses revealed low oral bioavailability (F < 4%) and low solubility (<25 μM), although the half-lives (t1/2) of SfA and SfB in mouse blood after intravenous (i.v.) dosing were long (t1/2 > 5 h). These data demonstrate that naturally occurring sanglifehrins are suitable lead compounds for the development of novel analogues that are less immunosuppressive and that have improved metabolism and pharmacokinetic properties.

Collaboration


Dive into the Steven James Moss's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ming-Qiang Zhang

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Rose M. Sheridan

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge