Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven L. Cain is active.

Publication


Featured researches published by Steven L. Cain.


Biology Letters | 2006

Connecting the dots: an invariant migration corridor links the Holocene to the present

Joel Berger; Steven L. Cain; Kim Murray Berger

Numerous species undergo impressive movements, but due to massive changes in land use, long distance migration in terrestrial vertebrates has become a highly fragile ecological phenomenon. Uncertainty about the locations of past migrations and the importance of current corridors hampers conservation planning. Using archeological data from historic kill sites and modern methods to track migration, we document an invariant, 150 km (one-way) migration corridor used for at least 6000 years by North Americas sole extant endemic ungulate. Pronghorn (Antilocapra americana) from the Greater Yellowstone Ecosystem, like other long distant migrants including Serengeti wildebeest (Connochaetes taurinus) and Arctic caribou (Rangifer tarandus), move nearly 50 km d−1, but in contrast to these other species, rely on an invariant corridor averaging only 2 km wide. Because an entire population accesses a national park (Grand Teton) by passage through bottlenecks as narrow as 121 m, any blockage to movement will result in extirpation. Based on animation of real data coupled with the loss of six historic routes, alternative pathways throughout the 60 000 km2 Yellowstone ecosystem are no longer available. Our findings have implications for developing strategies to protect long distance land migrations in Africa, Asia and North America and to prevent the disappearance of ecological phenomena that have operated for millennia.


Journal of Wildlife Management | 2010

Contrasting Activity Patterns of Sympatric and Allopatric Black and Grizzly Bears

Charles C. Schwartz; Steven L. Cain; Shannon Podruzny; Steve Cherry; Leslie Frattaroli

Abstract The distribution of grizzly (Ursus arctos) and American black bears (U. americanus) overlaps in western North America. Few studies have detailed activity patterns where the species are sympatric and no studies contrasted patterns where populations are both sympatric and allopatric. We contrasted activity patterns for sympatric black and grizzly bears and for black bears allopatric to grizzly bears, how human influences altered patterns, and rates of grizzly–black bear predation. Activity patterns differed between black bear populations, with those sympatric to grizzly bears more day-active. Activity patterns of black bears allopatric with grizzly bears were similar to those of female grizzly bears; both were crepuscular and day-active. Male grizzly bears were crepuscular and night-active. Both species were more night-active and less day-active when ≤1 km from roads or developments. In our sympatric study area, 2 of 4 black bear mortalities were due to grizzly bear predation. Our results suggested patterns of activity that allowed for intra- and inter-species avoidance. National park management often results in convergence of locally high human densities in quality bear habitat. Our data provide additional understanding into how bears alter their activity patterns in response to other bears and humans and should help park managers minimize undesirable bear–human encounters when considering needs for temporal and spatial management of humans and human developments in bear habitats.


Journal of Wildlife Management | 2009

Performance of Spread Spectrum Global Positioning System Collars on Grizzly and Black Bears

Charles C. Schwartz; Shannon Podruzny; Steven L. Cain; Steve Cherry

Abstract Global Positioning System (GPS) telemetry is a prevalent tool now used in the study of large mammals. Global Positioning Systems either store the data on board the collar or contain a remote-transfer system that allows for data recovery at more frequent intervals. Spread spectrum (S–S) technology is a new mode of data transfer designed to overcome interference problems associated with narrow-band very high frequency and ultra high frequency data-transfer systems. We evaluated performance of S–S GPS radiocollars deployed on grizzly (Ursus arctos) and black bears (U. americanus). We also evaluated variables that influenced GPS fix success rates, with particular focus on animal activity, time of year, and temperature. The S–S GPS collars performed to our expectations and met study objectives; we did not experience any major problems with the data-transfer system. We observed varying rates of fix success that were directly related to recorded activity counts. Using logistic regression, we verified that activity counts were a reasonable measure of resting or feeding–traveling in both bear species. Our results showed that 73% and 79% of missed fixes, respectively, occurred when we predicted black and grizzly bears to be resting. Temperatures measured in the canister of the collar were not correlated with air temperature, suggesting posture and activity influenced canister temperature. Both measures of temperature were predictive of fix success. We did not find that fix success was related to body morphology (i.e., neck circumference, mass, and chest girth), fix interval, position of the GPS antenna relative to the sky, or sex of the bear. We conclude that fix success for both species is strongly related to activity patterns and time of year. Activity counters appear to be a reasonable measure of this behavior, and we recommend researchers consider including an activity-count system when deploying GPS collars. We also recommend researchers explore building separate models of habitat selection based upon categories of activity to account for bias in fix success associated with bear behavior.


Ursus | 2014

Dietary breadth of grizzly bears in the Greater Yellowstone Ecosystem

Kerry A. Gunther; Rebecca R. Shoemaker; Kevin L. Frey; Mark A. Haroldson; Steven L. Cain; Frank T. van Manen; Jennifer K. Fortin

Abstract Grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE) are opportunistic omnivores that eat a great diversity of plant and animal species. Changes in climate may affect regional vegetation, hydrology, insects, and fire regimes, likely influencing the abundance, range, and elevational distribution of the plants and animals consumed by GYE grizzly bears. Determining the dietary breadth of grizzly bears is important to document future changes in food resources and how those changes may affect the nutritional ecology of grizzlies. However, no synthesis exists of all foods consumed by grizzly bears in the GYE. We conducted a review of available literature and compiled a list of species consumed by grizzly bears in the GYE. We documented ≥266 species within 200 genera from 4 kingdoms, including 175 plant, 37 invertebrate, 34 mammal, 7 fungi, 7 bird, 4 fish, 1 amphibian, and 1 algae species as well as 1 soil type consumed by grizzly bears. The average energy values of the ungulates (6.8 kcal/g), trout (Oncorhynchus spp., 6.1 kcal/g), and small mammals (4.5 kcal/g) eaten by grizzlies were higher than those of the plants (3.0 kcal/g) and invertebrates (2.7 kcal/g) they consumed. The most frequently detected diet items were graminoids, ants (Formicidae), whitebark pine seeds (Pinus albicaulis), clover (Trifolium spp.), and dandelion (Taraxacum spp.). The most consistently used foods on a temporal basis were graminoids, ants, whitebark pine seeds, clover, elk (Cervus elaphus), thistle (Cirsium spp.), and horsetail (Equisetum spp.). Historically, garbage was a significant diet item for grizzlies until refuse dumps were closed. Use of forbs increased after garbage was no longer readily available. The list of foods we compiled will help managers of grizzly bears and their habitat document future changes in grizzly bear food habits and how bears respond to changing food resources.


Conservation Biology | 2014

Moving beyond science to protect a mammalian migration corridor.

Joel Berger; Steven L. Cain

As the discipline of conservation biology evolves and practitioners grow increasingly concerned about how to put results into achievable conservation, it is still unclear the extent to which science drives conservation outcomes, especially across rural landscapes. We addressed this issue by examining the role of science in the protection of a biological corridor. Our focus is on a North American endemic mammal reliant on long distance migration as an adaptive strategy, the pronghorn (Antilocapra americana) of the southern Greater Yellowstone Ecosystem. The role of science in realizing policy change, while critical as a first step, was surprisingly small relative to the role of other human dimensions. In a case study, we strategically addressed a variety of conservation needs beyond science, first by building a partnership between government and private interests and then by enhancing interest in migratory phenomena across a landscape with divergent political ideologies and economic bases. By developing awareness and even peoples pride in the concept of corridor conservation, we achieved local, state, and federal acceptance for protection of a 70 km long, 2 km wide pathway for the longest terrestrial migrant in the contiguous United States. Key steps included conducting and publishing research that defined the migration corridor; fostering a variety of media coverage at local, regional, and national levels; conducting public outreach through stakeholder workshops, meetings, and presentations; and meeting with and gaining the support of elected officials. All these contributed to the eventual policy change that created the first federally protected migration corridor in the United States, which in turn stimulated additional conservation actions. On the basis of our experience, we believe conservation scientists can and should step beyond traditional research roles to assist with on-the-ground conservation by engaging in aspects of conservation that involve local communities and public policy.


Ecology and Evolution | 2014

Influence of whitebark pine decline on fall habitat use and movements of grizzly bears in the Greater Yellowstone Ecosystem.

Cecily M. Costello; Frank T. van Manen; Mark A. Haroldson; Michael R. Ebinger; Steven L. Cain; Kerry A. Gunther; Daniel D. Bjornlie

When abundant, seeds of the high-elevation whitebark pine (WBP; Pinus albicaulis) are an important fall food for grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem. Rates of bear mortality and bear/human conflicts have been inversely associated with WBP productivity. Recently, mountain pine beetles (Dendroctonus ponderosae) have killed many cone-producing WBP trees. We used fall (15 August–30 September) Global Positioning System locations from 89 bear years to investigate temporal changes in habitat use and movements during 2000–2011. We calculated Manly–Chesson (MC) indices for selectivity of WBP habitat and secure habitat (≥500 m from roads and human developments), determined dates of WBP use, and documented net daily movement distances and activity radii. To evaluate temporal trends, we used regression, model selection, and candidate model sets consisting of annual WBP production, sex, and year. One-third of sampled grizzly bears had fall ranges with little or no mapped WBP habitat. Most other bears (72%) had a MC index above 0.5, indicating selection for WBP habitats. From 2000 to 2011, mean MC index decreased and median date of WBP use shifted about 1 week later. We detected no trends in movement indices over time. Outside of national parks, there was no correlation between the MC indices for WBP habitat and secure habitat, and most bears (78%) selected for secure habitat. Nonetheless, mean MC index for secure habitat decreased over the study period during years of good WBP productivity. The wide diet breadth and foraging plasticity of grizzly bears likely allowed them to adjust to declining WBP. Bears reduced use of WBP stands without increasing movement rates, suggesting they obtained alternative fall foods within their local surroundings. However, the reduction in mortality risk historically associated with use of secure, high-elevation WBP habitat may be diminishing for bears residing in multiple-use areas.


PLOS ONE | 2016

Diet and Macronutrient Optimization in Wild Ursids: A Comparison of Grizzly Bears with Sympatric and Allopatric Black Bears

Cecily M. Costello; Steven L. Cain; Shannon R. Pils; Leslie Frattaroli; Mark A. Haroldson; Frank T. van Manen

When fed ad libitum, ursids can maximize mass gain by selecting mixed diets wherein protein provides 17 ± 4% of digestible energy, relative to carbohydrates or lipids. In the wild, this ability is likely constrained by seasonal food availability, limits of intake rate as body size increases, and competition. By visiting locations of 37 individuals during 274 bear-days, we documented foods consumed by grizzly (Ursus arctos) and black bears (Ursus americanus) in Grand Teton National Park during 2004–2006. Based on published nutritional data, we estimated foods and macronutrients as percentages of daily energy intake. Using principal components and cluster analyses, we identified 14 daily diet types. Only 4 diets, accounting for 21% of days, provided protein levels within the optimal range. Nine diets (75% of days) led to over-consumption of protein, and 1 diet (3% of days) led to under-consumption. Highest protein levels were associated with animal matter (i.e., insects, vertebrates), which accounted for 46–47% of daily energy for both species. As predicted: 1) daily diets dominated by high-energy vertebrates were positively associated with grizzly bears and mean percent protein intake was positively associated with body mass; 2) diets dominated by low-protein fruits were positively associated with smaller-bodied black bears; and 3) mean protein was highest during spring, when high-energy plant foods were scarce, however it was also higher than optimal during summer and fall. Contrary to our prediction: 4) allopatric black bears did not exhibit food selection for high-energy foods similar to grizzly bears. Although optimal gain of body mass was typically constrained, bears usually opted for the energetically superior trade-off of consuming high-energy, high-protein foods. Given protein digestion efficiency similar to obligate carnivores, this choice likely supported mass gain, consistent with studies showing monthly increases in percent body fat among bears in this region.


Journal of Wildlife Management | 2012

Spatial ecology of wolverines at the southern periphery of distribution

Robert M. Inman; Mark L. Packila; Kristine H. Inman; Anthony J. Mccue; Gary C. White; Jens Persson; Bryan C. Aber; Mark L. Orme; Kurt L. Alt; Steven L. Cain; Jay A. Fredrick; Bob J. Oakleaf; Shawn S. Sartorius


Conservation Biology | 1999

Reproductive Synchrony in Brucellosis‐Exposed Bison in the Southern Greater Yellowstone Ecosystem and in Noninfected Populations

Joel Berger; Steven L. Cain


Conservation Biology | 2014

Optimism and challenge for science-based conservation of migratory species in and out of U.S. National Parks

Joel Berger; Steven L. Cain; Ellen Cheng; Peter Dratch; Kevin Ellison; John Francis; Herbert C. Frost; Scott M. Gende; Craig Groves; William A. Karesh; Elaine Leslie; Gary E. Machlis; Rodrigo A. Medellín; Reed F. Noss; Kent H. Redford; Michael Soukup; David S. Wilcove; Steve Zack

Collaboration


Dive into the Steven L. Cain's collaboration.

Top Co-Authors

Avatar

Mark A. Haroldson

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Frank T. van Manen

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bryan C. Aber

Idaho Department of Fish and Game

View shared research outputs
Top Co-Authors

Avatar

Charles C. Schwartz

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cecily M. Costello

Wildlife Conservation Society

View shared research outputs
Top Co-Authors

Avatar

Daniel J. Thompson

South Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Megan D. Higgs

Montana State University

View shared research outputs
Top Co-Authors

Avatar

Daniel B. Tyers

United States Forest Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge