Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven L. Colletti is active.

Publication


Featured researches published by Steven L. Colletti.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Discovery of platencin, a dual FabF and FabH inhibitor with in vivo antibiotic properties.

Jun Wang; Srinivas Kodali; Sang Ho Lee; Andrew Galgoci; Ronald E. Painter; Karen Dorso; Fred Racine; Mary Motyl; Lorraine D. Hernandez; Elizabeth Tinney; Steven L. Colletti; Kithsiri Herath; Richard D. Cummings; Oscar Salazar; Ignacio González; Angela Basilio; Francisca Vicente; Olga Genilloud; Fernando Pelaez; Hiranthi Jayasuriya; Katherine Young; Doris F. Cully; Sheo B. Singh

Emergence of bacterial resistance is a major issue for all classes of antibiotics; therefore, the identification of new classes is critically needed. Recently we reported the discovery of platensimycin by screening natural product extracts using a target-based whole-cell strategy with antisense silencing technology in concert with cell free biochemical validations. Continued screening efforts led to the discovery of platencin, a novel natural product that is chemically and biologically related but different from platensimycin. Platencin exhibits a broad-spectrum Gram-positive antibacterial activity through inhibition of fatty acid biosynthesis. It does not exhibit cross-resistance to key antibiotic resistant strains tested, including methicillin-resistant Staphylococcus aureus, vancomycin-intermediate S. aureus, and vancomycin-resistant Enterococci. Platencin shows potent in vivo efficacy without any observed toxicity. It targets two essential proteins, β-ketoacyl-[acyl carrier protein (ACP)] synthase II (FabF) and III (FabH) with IC50 values of 1.95 and 3.91 μg/ml, respectively, whereas platensimycin targets only FabF (IC50 = 0.13 μg/ml) in S. aureus, emphasizing the fact that more antibiotics with novel structures and new modes of action can be discovered by using this antisense differential sensitivity whole-cell screening paradigm.


Science Translational Medicine | 2012

Niacin Lipid Efficacy Is Independent of Both the Niacin Receptor GPR109A and Free Fatty Acid Suppression

Brett Lauring; Andrew K.P. Taggart; James R. Tata; Richard L. Dunbar; Luzelena Caro; Kang Cheng; Jayne Chin; Steven L. Colletti; Josee Cote; Sauzanne Khalilieh; Jiajun Liu; Wen-Lin Luo; Alexandra MacLean; Laurence B. Peterson; Adam B. Polis; Waheeda Sirah; Tsuei-Ju Wu; Xuan Liu; Lan Jin; Kenneth K. Wu; P. Douglas Boatman; Graeme Semple; Dominic P. Behan; Daniel T. Connolly; Eseng Lai; John A. Wagner; Samuel D. Wright; Cynthia Cuffie; Yale B. Mitchel; Daniel J. Rader

GPR109A is not the target mediating niacin’s lipid efficacy and the free fatty acid hypothesis does not explain niacin’s mechanism of action. Breaking Free of the “FFA Hypothesis” Free fatty acids (FFAs) appear in the blood plasma after a meal. Niacin—a vitamin that helps to regulate lipid levels in the body—is given to patients to reduce the amount of FFAs. It also works to raise “good” cholesterol [high-density lipoprotein (HDL)] and lower both “bad” cholesterol [low-density lipoprotein (LDL)] and triglycerides. The “FFA hypothesis” suggests that niacin works to exert these beneficial lipid effects by limiting the amount of FFAs available to synthesize triglycerides. Lauring, Taggart, and colleagues now challenge this long-standing theory. In studies in mice and humans, the authors debunk the hypothesis, showing that the effect on HDL, LDL, and triglycerides is not directly linked to FFAs. To study the lipid-modifying effects of niacin (nicotinic acid), Lauring et al. used a genetic, humanized mouse model lacking the LDL receptor. In these animals, niacin increased HDL cholesterol levels, as expected. Lack of GPR109A in these animals blocked the anti-lipolytic effect of nicotinic acid on FFAs but had no effect on drug-related changes in plasma HDL and LDL cholesterol or triglyceride levels. Treatment of the mice with a GPR109A agonist, MK-1903, also caused an anti-lipolytic effect but did not affect levels of triglyceride or LDL and HDL cholesterol. Together, these in vivo preclinical studies suggest that niacin works to lower FFAs through GPR109A but has an independent mechanism of action on other lipids. The authors addressed the role of GPR109A in humans by testing the effects of MK-1903 and of another synthetic GPR109A agonist in clinical trials. Both agonists affected FFA lipolysis but had only minor effects on HDL cholesterol and triglyceride levels in patients, thus mirroring results seen in animals and showing that niacin works independently of GPR109A to modify dyslipidemia. The studies by Lauring et al. point to a new, yet-uncovered mechanism of action for niacin’s beneficial effects on lipids in the blood. Despite overturning the FFA hypothesis and potentially redirecting drug development away from GPR109A agonists, niacin could still be useful for treating other diseases in patients, including atherosclerosis and inflammation, where GPR109A plays a major role in cell signaling. Nicotinic acid (niacin) induces beneficial changes in serum lipoproteins and has been associated with beneficial cardiovascular effects. Niacin reduces low-density lipoprotein, increases high-density lipoprotein, and decreases triglycerides. It is well established that activation of the seven-transmembrane Gi-coupled receptor GPR109A on Langerhans cells results in release of prostaglandin D2, which mediates the well-known flushing side effect of niacin. Niacin activation of GPR109A on adipocytes also mediates the transient reduction of plasma free fatty acid (FFA) levels characteristic of niacin, which has been long hypothesized to be the mechanism underlying the changes in the serum lipid profile. We tested this “FFA hypothesis” and the hypothesis that niacin lipid efficacy is mediated via GPR109A by dosing mice lacking GPR109A with niacin and testing two novel, full GPR109A agonists, MK-1903 and SCH900271, in three human clinical trials. In mice, the absence of GPR109A had no effect on niacin’s lipid efficacy despite complete abrogation of the anti-lipolytic effect. Both MK-1903 and SCH900271 lowered FFAs acutely in humans; however, neither had the expected effects on serum lipids. Chronic FFA suppression was not sustainable via GPR109A agonism with niacin, MK-1903, or SCH900271. We conclude that the GPR109A receptor does not mediate niacin’s lipid efficacy, challenging the long-standing FFA hypothesis.


Journal of Medicinal Chemistry | 2008

3-(1H-Tetrazol-5-yl)-1,4,5,6-tetrahydro-cyclopentapyrazole (MK-0354): A Partial Agonist of the Nicotinic Acid Receptor, G-Protein Coupled Receptor 109a, with Antilipolytic but No Vasodilatory Activity in Mice

Graeme Semple; Philip J. Skinner; Tawfik Gharbaoui; Young-Jun Shin; Jae-Kyu Jung; Martin C. Cherrier; Peter J. Webb; Susan Y. Tamura; P. Douglas Boatman; Carleton R. Sage; Thomas O. Schrader; Ruoping Chen; Steven L. Colletti; James R. Tata; M. Gerard Waters; Kang Cheng; Andrew K.P. Taggart; Tian-Quan Cai; Ester Carballo-Jane; Dominic P. Behan; Daniel T. Connolly; Jeremy G. Richman

The discovery and profiling of 3-(1H-tetrazol-5-yl)-1,4,5,6-tetrahydro-cyclopentapyrazole (5a, MK-0354), a partial agonist of GPR109a, is described. Compound 5a retained the plasma free fatty acid lowering effects in mice associated with GPR109a agonism, but did not induce vasodilation at the maximum feasible dose. Moreover, preadministration of 5a blocked the flushing effect induced by nicotinic acid but not that induced by PGD2. This profile made 5a a suitable candidate for further study for the treatment of dyslipidemia.


Bioorganic & Medicinal Chemistry Letters | 2001

Broad spectrum antiprotozoal agents that inhibit histone deacetylase: structure-activity relationships of apicidin. Part 1.

Steven L. Colletti; Robert W. Myers; Sandra J. Darkin-Rattray; Anne Gurnett; Paula M. Dulski; Stefan Galuska; John J. Allocco; Michelle B. Ayer; Chunshi Li; Julie Lim; Tami Crumley; Christine Cannova; Dennis M. Schmatz; Matthew J. Wyvratt; Michael H. Fisher; Peter T. Meinke

Apicidin, a natural product recently isolated at Merck, inhibits both mammalian and protozoan histone deacetylases (HDACs). The conversion of apicidin, a nanomolar inhibitor of HDACs, into a series of side-chain analogues that display picomolar enzyme affinity is described within this structure-activity study.


Bioorganic & Medicinal Chemistry Letters | 2009

Discovery of spirocyclic secondary amine-derived tertiary ureas as highly potent, selective and bioavailable soluble epoxide hydrolase inhibitors.

Hong C. Shen; Fa-Xiang Ding; Siyi Wang; Suoyu Xu; Hsuan-shen Chen; Xinchun Tong; Vincent Tong; Kaushik Mitra; Sanjeev Kumar; Xiaoping Zhang; Yuli Chen; Gaochao Zhou; Lee-Yuh Pai; Magdalena Alonso-Galicia; Xiaoli Chen; Bei Zhang; James R. Tata; Joel P. Berger; Steven L. Colletti

Spirocyclic secondary amine-derived trisubstituted ureas were identified as highly potent, bioavailable and selective soluble epoxide hydrolase (sEH) inhibitors. Despite good oral exposure and excellent ex vivo target engagement in blood, one such compound, rac-1a, failed to lower blood pressure acutely in spontaneously hypertensive rats (SHRs). This study posed the question as to whether sEH inhibition provides a robust mechanism leading to a significant antihypertensive effect.


Journal of Medicinal Chemistry | 2009

Discovery of novel tricyclic full agonists for the G-protein-coupled niacin receptor 109A with minimized flushing in rats.

Hong C. Shen; Fa-Xiang Ding; Qiaolin Deng; Larissa Wilsie; Mihajlo L. Krsmanovic; Andrew K.P. Taggart; Ester Carballo-Jane; Ning Ren; Tian-Quan Cai; Wu Tj; Kenneth K. Wu; Kang Cheng; Qing Chen; Michael Wolff; Xinchun Tong; Tom G. Holt; Waters Mg; Milton L. Hammond; Tata; Steven L. Colletti

Tricyclic analogues were rationally designed as the high affinity niacin receptor G-protein-coupled receptor 109A (GPR109A) agonists by overlapping three lead structures. Various tricyclic anthranilide and cycloalkene carboxylic acid full agonists were discovered with excellent in vitro activity. Compound 2g displayed a good therapeutic index regarding free fatty acids (FFA) reduction and vasodilation effects in rats, with very weak cytochrome P450 2C8 (CYP2C8) and cytochrome P450 2C9 (CYP2C9) inhibition, and a good mouse pharmacokinetics (PK) profile.


Journal of Medicinal Chemistry | 2009

Discovery of a Highly Potent, Selective, and Bioavailable Soluble Epoxide Hydrolase Inhibitor with Excellent Ex Vivo Target Engagement

Hong C. Shen; Fa-Xiang Ding; Siyi Wang; Qiaolin Deng; Xiaoping Zhang; Yuli Chen; Gaochao Zhou; Suoyu Xu; Hsuan-shen Chen; Xinchun Tong; Vincent Tong; Kaushik Mitra; Sanjeev Kumar; Christine Tsai; Andra S. Stevenson; Lee-Yuh Pai; Magdalena Alonso-Galicia; Xiaoli Chen; Stephen M. Soisson; Sophie Roy; Bei Zhang; James R. Tata; Joel P. Berger; Steven L. Colletti

4-Substituted piperidine-derived trisubstituted ureas are reported as highly potent and selective inhibitors for sEH. The SAR outlines approaches to improve activity against sEH and reduce ion channel and CYP liability. With minimal off-target activity and a good PK profile, the benchmark 2d exhibited remarkable in vitro and ex vivo target engagement. The eutomer entA-2d also elicited vasodilation effect in rat mesenteric artery.


Journal of Medicinal Chemistry | 2010

Discovery of a Biaryl Cyclohexene Carboxylic Acid (MK-6892): A Potent and Selective High Affinity Niacin Receptor Full Agonist with Reduced Flushing Profiles in Animals as a Preclinical Candidate

Hong C. Shen; Fa-Xiang Ding; Subharekha Raghavan; Qiaolin Deng; Silvi Luell; Michael J. Forrest; Ester Carballo-Jane; Larissa Wilsie; Mihajlo L. Krsmanovic; Andrew K. Taggart; Kenneth K. Wu; Tsuei-Ju Wu; Kang Cheng; Ning Ren; Tian-Quan Cai; Qing Chen; Junying Wang; Michael Wolff; Xinchun Tong; Tom G. Holt; M. Gerard Waters; Milton L. Hammond; James R. Tata; Steven L. Colletti

Biaryl cyclohexene carboxylic acids were discovered as full and potent niacin receptor (GPR109A) agonists. Compound 1e (MK-6892) displayed excellent receptor activity, good PK across species, remarkably clean off-target profiles, good ancillary pharmacology, and superior therapeutic window over niacin regarding the FFA reduction versus vasodilation in rats and dogs.


Tetrahedron Letters | 2000

Tryptophan-replacement and indole-modified apicidins: synthesis of potent and selective antiprotozoal agents

Steven L. Colletti; Chunshi Li; Michael H. Fisher; Matthew J. Wyvratt; Peter T. Meinke

Abstract A ruthenium tetraoxide catalyzed degradation of apicidins tryptophan indole provided access to two useful carboxylic acid homolog intermediates. The synthesis of a series of potent and/or selective ketone homologs and 2-arylindoles derived from apicidin is described.


Bioconjugate Chemistry | 2013

Endosomolytic Bioreducible Poly(amido amine disulfide) Polymer Conjugates for the in Vivo Systemic Delivery of siRNA Therapeutics

Rubina Parmar; Marina Busuek; Eileen S. Walsh; Karen R. Leander; Bonnie J. Howell; Laura Sepp-Lorenzino; Eric Kemp; Louis S. Crocker; Anthony Leone; Christopher J. Kochansky; Brian A. Carr; Robert M. Garbaccio; Steven L. Colletti; Weimin Wang

Efficient siRNA delivery is dependent not only on the ability of the delivery vehicle to target a specific organ but also on its ability to enable siRNA entry into the cytoplasm of the target cells. Polymers with endosomolytic properties are increasingly being used as siRNA delivery vehicles due to their potential to facilitate endosomal escape and intracellular delivery. Addition of disulfide bonds in the backbone of these polymers was expected to provide degradability through reduction by glutathione in cytosol. This paper describes the synthesis of new endosomolytic bioreducible poly(amido amine disulfide) polymers whose lytic potential can be masked at physiological pH, but can be restored at acidic endosomal pH. These polymer conjugates gave good in vitro knockdown (KD) and did not demonstrate cytotoxicity in a MTS assay. Efficient mRNA KD for apolipoprotein B in mouse liver was observed with these polyconjugates following intravenous dosing.

Researchain Logo
Decentralizing Knowledge