Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven L. Coon is active.

Publication


Featured researches published by Steven L. Coon.


Science | 1995

Pineal serotonin N-acetyltransferase: expression cloning and molecular analysis.

Steven L. Coon; Patrick H. Roseboom; Ruben Baler; Joan L. Weller; M. A. A. Namboodiri; Eugene V. Koonin; David C. Klein

Pineal serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase, or AA-NAT) generates the large circadian rhythm in melatonin, the hormone that coordinates daily and seasonal physiology in some mammals. Complementary DNA encoding ovine AA-NAT was cloned. The abundance of AA-NAT messenger RNA (mRNA) during the day was high in the ovine pineal gland and somewhat lower in retina. AA-NAT mRNA was found unexpectedly in the pituitary gland and in some brain regions. The night-to-day ratio of ovine pineal AA-NAT mRNA is less than 2. In contrast, the ratio exceeds 150 in rats. AA-NAT represents a family within a large superfamily of acetyltransferases.


Journal of Neurochemistry | 2002

Avian melatonin synthesis: Photic and circadian regulation of serotonin N-acetyltransferase mRNA in the chicken pineal gland and retina

Marianne Bernard; P. Michael Iuvone; Vincent M. Cassone; Patrick H. Roseboom; Steven L. Coon; David C. Klein

Abstract: The circadian rhythms in melatonin production in the chicken pineal gland and retina reflect changes in the activity of serotonin N‐acetyltransferase (arylalkylamine N‐acetyltransferase; AA‐NAT; EC 2.3.1.87). Here we determined that the chicken AA‐NAT mRNA is detectable in follicular pineal cells and retinal photoreceptors and that it exhibits a circadian rhythm, with peak levels at night. AA‐NAT mRNA was not detected in other tissues. The AA‐NAT mRNA rhythm in the pineal gland and retina persists in constant darkness (DD) and constant lighting (LL). The amplitude of the pineal mRNA rhythm is not decreased in LL. Light appears to influence the phase of the clock driving the rhythm in pineal AA‐NAT mRNA in two ways: The peak is delayed by ∼6 h in LL, and it is advanced by >4 h by a 6‐h light pulse late in subjective night in DD. Nocturnal AA‐NAT mRNA levels do not change during a 20‐min exposure to light, whereas this treatment dramatically decreases AA‐NAT activity. These observations suggest that the rhythmic changes in chicken pineal AA‐NAT activity reflect, at least in part, clock‐generated changes in mRNA levels. In contrast, changes in mRNA content are not involved in the rapid light‐induced decrease in AA‐NAT activity.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Role of a pineal cAMP-operated arylalkylamine N-acetyltransferase/14-3-3-binding switch in melatonin synthesis.

Surajit Ganguly; Jonathan A. Gastel; Joan L. Weller; Christian Schwartz; Howard Jaffe; M. A. A. Namboodiri; Steven L. Coon; Alison Burgess Hickman; Mark D. Rollag; Tomas Obsil; Philippe Beauverger; Gilles Ferry; Jean A. Boutin; David C. Klein

The daily rhythm in melatonin levels is controlled by cAMP through actions on the penultimate enzyme in melatonin synthesis, arylalkylamine N-acetyltransferase (AANAT; serotonin N-acetyltransferase, EC 2.3.1.87). Results presented here describe a regulatory/binding sequence in AANAT that encodes a cAMP-operated binding switch through which cAMP-regulated protein kinase-catalyzed phosphorylation [RRHTLPAN → RRHpTLPAN] promotes formation of a complex with 14-3-3 proteins. Formation of this AANAT/14-3-3 complex enhances melatonin production by shielding AANAT from dephosphorylation and/or proteolysis and by decreasing the Km for 5-hydroxytryptamine (serotonin). Similar switches could play a role in cAMP signal transduction in other biological systems.


Endocrinology | 1999

ZEBRAFISH SEROTONIN N-ACETYLTRANSFERASE-2 : MARKER FOR DEVELOPMENT OF PINEAL PHOTORECEPTORS AND CIRCADIAN CLOCK FUNCTION

Yoav Gothilf; Steven L. Coon; Reiko Toyama; Ajay Chitnis; M. A. A. Namboodiri; David C. Klein

Serotonin N-acetyltransferase (AANAT), the penultimate enzyme in melatonin synthesis, is typically found only at significant levels in the pineal gland and retina. Large changes in the activity of this enzyme drive the circadian rhythm in circulating melatonin seen in all vertebrates. In this study, we examined the utility of using AANAT messenger RNA (mRNA) as a marker to monitor the very early development of pineal photoreceptors and circadian clock function in zebrafish. Zebrafish AANAT-2 (zfAANAT-2) cDNA was isolated and used for in situ hybridization. In the adult, zfAANAT-2 mRNA is expressed exclusively in pineal cells and retinal photoreceptors. Developmental analysis, using whole mount in situ hybridization, indicated that pineal zfAANAT-2 mRNA expression is first detected at 22 h post fertilization. Retinal zfAANAT-2 mRNA was first detected on day 3 post fertilization and appears to be associated with development of the retinal photoreceptors. Time-of-day analysis of 2- to 5-day-old zebrafish lar...


Journal of Biological Chemistry | 2009

Night/Day Changes in Pineal Expression of >600 Genes CENTRAL ROLE OF ADRENERGIC/cAMP SIGNALING

Michael J. Bailey; Steven L. Coon; David Allan Carter; Ann Humphries; Jong-So Kim; Qiong Shi; Pascaline Gaildrat; Fabrice Morin; Surajit Ganguly; John B. Hogenesch; Joan L. Weller; Martin F. Rath; Morten Møller; Ruben Baler; David Sugden; Zoila Rangel; Peter J. Munson; David C. Klein

The pineal gland plays an essential role in vertebrate chronobiology by converting time into a hormonal signal, melatonin, which is always elevated at night. Here we have analyzed the rodent pineal transcriptome using Affymetrix GeneChip® technology to obtain a more complete description of pineal cell biology. The effort revealed that 604 genes (1,268 probe sets) with Entrez Gene identifiers are differentially expressed greater than 2-fold between midnight and mid-day (false discovery rate <0.20). Expression is greater at night in ∼70%. These findings were supported by the results of radiochemical in situ hybridization histology and quantitative real time-PCR studies. We also found that the regulatory mechanism controlling the night/day changes in the expression of most genes involves norepinephrine-cyclic AMP signaling. Comparison of the pineal gene expression profile with that in other tissues identified 334 genes (496 probe sets) that are expressed greater than 8-fold higher in the pineal gland relative to other tissues. Of these genes, 17% are expressed at similar levels in the retina, consistent with a common evolutionary origin of these tissues. Functional categorization of the highly expressed and/or night/day differentially expressed genes identified clusters that are markers of specialized functions, including the immune/inflammation response, melatonin synthesis, photodetection, thyroid hormone signaling, and diverse aspects of cellular signaling and cell biology. These studies produce a paradigm shift in our understanding of the 24-h dynamics of the pineal gland from one focused on melatonin synthesis to one including many cellular processes.


Endocrinology | 1998

Transcripts Encoding Two Melatonin Synthesis Enzymes in the Teleost Pineal Organ: Circadian Regulation in Pike and Zebrafish, But Not in Trout1

Valérie Bégay; Jack Falcón; Gregory M. Cahill; David C. Klein; Steven L. Coon

In this report the photosensitive teleost pineal organ was studied in three teleosts, in which melatonin production is known to exhibit a daily rhythm with higher levels at night; in pike and zebrafish this increase is driven by a pineal clock, whereas in trout it occurs exclusively in response to darkness. Here we investigated the regulation of messenger RNA (mRNA) encoding serotonin N-acetyltransferase (AA-NAT), the penultimate enzyme in melatonin synthesis, which is thought to be primarily responsible for changes in melatonin production. AA-NAT mRNA was found in the pineal organ of all three species and in the zebrafish retina. A rhythm in AA-NAT mRNA occurs in vivo in the pike pineal organ in a light/dark (L/D) lighting environment, in constant lighting (L/L), or in constant darkness (D/D) and in vitro in the zebrafish pineal organ in L/D and L/L, indicating that these transcripts are regulated by a circadian clock. In contrast, trout pineal AA-NAT mRNA levels are stable in vivo and in vitro in L/D, L...


Journal of Biological Chemistry | 1999

Two Arylalkylamine N-Acetyltransferase Genes Mediate Melatonin Synthesis in Fish

Steven L. Coon; Valerie Begay; D.T. Deurloo; Jack Falcón; David C. Klein

Serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase, AANAT, EC 2.3.1.87) is the first enzyme in the conversion of serotonin to melatonin. Large changes in AANAT activity play an important role in the daily rhythms in melatonin production. Although a single AANAT gene has been found in mammals and the chicken, we have now identified two AANAT genes in fish. These genes are designated AANAT-1 andAANAT-2; all known AANATs belong to the AANAT-1subfamily. Pike AANAT-1 is nearly exclusively expressed in the retina and AANAT-2 in the pineal gland. The abundance of each mRNA changes on a circadian basis, with retinal AANAT-1 mRNA peaking in late afternoon and pineal AANAT-2 mRNA peaking 6 h later. The pikeAANAT-1 and AANAT-2 enzymes (66% identical amino acids) exhibit marked differences in their affinity for serotonin, relative affinity for indoleethylamines versusphenylethylamines and temperature-activity relationships. Two AANAT genes also exist in another fish, the trout. The evolution of two AANATs may represent a strategy to optimally meet tissue-related requirements for synthesis of melatonin: pineal melatonin serves an endocrine role and retinal melatonin plays a paracrine role.


Journal of Neuroendocrinology | 2003

Genetic, Temporal and Developmental Differences Between Melatonin Rhythm Generating Systems in the Teleost Fish Pineal Organ and Retina

Jacky Falcón; Yoav Gothilf; Steven L. Coon; Gilles Boeuf; David C. Klein

Complete melatonin rhythm generating systems, including photodetector, circadian clock and melatonin synthesis machinery, are located within individual photoreceptor cells in two sites in Teleost fish: the pineal organ and retina. In both, light regulates daily variations in melatonin secretion by controlling the activity of arylalkylamine N‐acetyltransferase (AANAT). However, in each species examined to date, marked differences exist between the two organs which may involve the genes encoding the photopigments, genes encoding AANAT, the times of day at which AANAT activity and melatonin production peak and the developmental schedule. We review the fish pineal and retinal melatonin rhythm generating systems and consider the evolutional pressures and other factors which led to these differences.


Trends in Endocrinology and Metabolism | 1996

New light is shining on the melatonin rhythm enzyme: the first postcloning view.

David C. Klein; Patrick H. Roseboom; Steven L. Coon

One of the most interesting molecules in circadian biology is serotonin N-acetyltransferase (arylalkyfamine N-acetyltransferase, AANAT), the enzyme that controls the daily rhythm in pineal melatonin production and blood melatonin. The recent cloning of AANAT cDNA has led to the characterization of the human gene; the realization that AANAT represents a unique gene family; the discovery of circadian rhythms in AANAT mRNA; the determination of the basis of transsynaptic and cellular regulation of expression of the AANAT gene; a new understanding of the relationship of AANAT mRNA and activity; and the surprising finding of strong expression of the AANAT gene in the retina and significant levels in select brain regions, the pituitary gland, and testes. The cloning of AANAT cDNA has not only made it possible to answer longstanding questions in circadian biology, but has also raised stimulating new issues.


Endocrinology | 2001

Regulation of Arylalkylamine N-Acetyltransferase-2 (AANAT2, EC 2.3.1.87) in the Fish Pineal Organ: Evidence for a Role of Proteasomal Proteolysis

Jack Falcón; Kristina M. Galarneau; Joan L. Weller; Benny Ron; Galit Chen; Steven L. Coon; David C. Klein

In fish, individual photoreceptor cells in the pineal organ and retina contain complete melatonin rhythm generating systems. In the pike and seabream, this includes a photodetector, circadian clock, and melatonin synthesis machinery; the trout lacks a functional clock. The melatonin rhythm is due in part to a nocturnal increase in the activity of the arylalkylamine N-acetyltransferase (AANAT) which is inhibited by light. Two AANATs have been identified in fish: AANAT1, more closely related to AANATs found in higher vertebrates, is specifically expressed in the retina; AANAT2 is specifically expressed in the pineal organ. We show that there is a physiological day/night rhythm in pineal AANAT2 protein in the pike, and that light exposure at midnight decreases the abundance of AANAT2 protein and activity. In culture, this decrease is blocked by inhibitors of the proteasomal degradation pathway. If glands are maintained under light at night, treatment with these inhibitors increases AANAT2 activity and protei...

Collaboration


Dive into the Steven L. Coon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joan L. Weller

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Morten Møller

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Martin F. Rath

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jack Falcón

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Surajit Ganguly

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Patrick H. Roseboom

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jong-So Kim

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Qiong Shi

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge