Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven L. Dixon is active.

Publication


Featured researches published by Steven L. Dixon.


Journal of Computer-aided Molecular Design | 2006

PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results

Steven L. Dixon; Alexander M. Smondyrev; Eric H. Knoll; Shashidhar N. Rao; David E. Shaw

SummaryWe introduce PHASE, a highly flexible system for common pharmacophore identification and assessment, 3D QSAR model development, and 3D database creation and searching. The primary workflows and tasks supported by PHASE are described, and details of the underlying scientific methodologies are provided. Using results from previously published investigations, PHASE is compared directly to other ligand-based software for its ability to identify target pharmacophores, rationalize structure-activity data, and predict activities of external compounds.


Chemical Biology & Drug Design | 2006

PHASE : A novel approach to pharmacophore modeling and 3D database searching

Steven L. Dixon; Alexander M. Smondyrev; Shashidhar N. Rao

Pharmacophore modeling and 3D database searching are now recognized as integral components of lead discovery and lead optimization, and the continuing need for improved pharmacophore‐based tools has driven the development of PHASE. By employing a novel, tree‐based partitioning algorithm, PHASE exhaustively identifies spatial arrangements of functional groups that are common and essential to the biologic activity of a set of high affinity ligands. These pharmacophore hypotheses are validated in a number of ways, including their ability to: (i) rationalize the binding affinities of a training set of molecules of varying activity, (ii) successfully predict the affinities of a test set of molecules, and (iii) selectively retrieve known actives from a database of drug‐like molecules. In addition, PHASE uniquely offers the ability to distinguish multiple binding modes through a bi‐directional clustering approach applied to bit string representations of the ligand/hypothesis space.


Journal of Molecular Graphics & Modelling | 2010

Analysis and comparison of 2D fingerprints: Insights into database screening performance using eight fingerprint methods

Jianxin Duan; Steven L. Dixon; Jeffrey F. Lowrie; Woody Sherman

Virtual screening is a widely used strategy in modern drug discovery and 2D fingerprint similarity is an important tool that has been successfully applied to retrieve active compounds from large datasets. However, it is not always straightforward to select an appropriate fingerprint method and associated settings for a given problem. Here, we applied eight different fingerprint methods, as implemented in the new cheminformatics package Canvas, on a well-validated dataset covering five targets. The fingerprint methods include Linear, Dendritic, Radial, MACCS, MOLPRINT2D, Pairwise, Triplet, and Torsion. We find that most fingerprints have similar retrieval rates on average; however, each has special characteristics that distinguish its performance on different query molecules and ligand sets. For example, some fingerprints exhibit a significant ligand size dependency whereas others are more robust with respect to variations in the query or active compounds. In cases where little information is known about the active ligands, MOLPRINT2D fingerprints produce the highest average retrieval actives. When multiple queries are available, we find that a fingerprint averaged over all query molecules is generally superior to fingerprints derived from single queries. Finally, a complementarity metric is proposed to determine which fingerprint methods can be combined to improve screening results.


Journal of Chemical Information and Modeling | 2010

Large-scale systematic analysis of 2D fingerprint methods and parameters to improve virtual screening enrichments.

G. Madhavi Sastry; Jeffrey F. Lowrie; Steven L. Dixon; Woody Sherman

A systematic virtual screening study on 11 pharmaceutically relevant targets has been conducted to investigate the interrelation between 8 two-dimensional (2D) fingerprinting methods, 13 atom-typing schemes, 13 bit scaling rules, and 12 similarity metrics using the new cheminformatics package Canvas. In total, 157 872 virtual screens were performed to assess the ability of each combination of parameters to identify actives in a database screen. In general, fingerprint methods, such as MOLPRINT2D, Radial, and Dendritic that encode information about local environment beyond simple linear paths outperformed other fingerprint methods. Atom-typing schemes with more specific information, such as Daylight, Mol2, and Carhart were generally superior to more generic atom-typing schemes. Enrichment factors across all targets were improved considerably with the best settings, although no single set of parameters performed optimally on all targets. The size of the addressable bit space for the fingerprints was also explored, and it was found to have a substantial impact on enrichments. Small bit spaces, such as 1024, resulted in many collisions and in a significant degradation in enrichments compared to larger bit spaces that avoid collisions.


Journal of Chemical Information and Modeling | 2011

Rapid Shape-Based Ligand Alignment and Virtual Screening Method Based on Atom/Feature-Pair Similarities and Volume Overlap Scoring

G. Madhavi Sastry; Steven L. Dixon; Woody Sherman

Shape-based methods for aligning and scoring ligands have proven to be valuable in the field of computer-aided drug design. Here, we describe a new shape-based flexible ligand superposition and virtual screening method, Phase Shape, which is shown to rapidly produce accurate 3D ligand alignments and efficiently enrich actives in virtual screening. We describe the methodology, which is based on the principle of atom distribution triplets to rapidly define trial alignments, followed by refinement of top alignments to maximize the volume overlap. The method can be run in a shape-only mode or it can include atom types or pharmacophore feature encoding, the latter consistently producing the best results for database screening. We apply Phase Shape to flexibly align molecules that bind to the same target and show that the method consistently produces correct alignments when compared with crystal structures. We then illustrate the effectiveness of the method for identifying active compounds in virtual screening of eleven diverse targets. Multiple parameters are explored, including atom typing, query structure conformation, and the database conformer generation protocol. We show that Phase Shape performs well in database screening calculations when compared with other shape-based methods using a common set of actives and decoys from the literature.


Journal of Chemical Information and Modeling | 2013

Kernel-Based Partial Least Squares: Application to Fingerprint-Based QSAR with Model Visualization

Yuling An; Woody Sherman; Steven L. Dixon

Numerous regression-based and machine learning techniques are available for the development of linear and nonlinear QSAR models that can accurately predict biological endpoints. Such tools can be quite powerful in the hands of an experienced modeler, but too frequently a disconnect remains between the modeler and project chemist because the resulting QSAR models are effectively black boxes. As a result, learning methods that yield models that can be visualized in the context of chemical structures are in high demand. In this work, we combine direct kernel-based PLS with Canvas 2D fingerprints to arrive at predictive QSAR models that can be projected onto the atoms of a chemical structure, allowing immediate identification of favorable and unfavorable characteristics. The method is validated using binding affinities for ligands from 10 different protein targets covering 7 distinct protein families. Models with significant predictive ability (test set Q(2) > 0.5) are obtained for 6 of 10 data sets, and fingerprints are shown to consistently outperform large collections of classical physicochemical and topological descriptors. In addition, we demonstrate how a simple bootstrapping technique may be employed to obtain uncertainties that provide meaningful estimates of prediction accuracy.


Journal of Computational Chemistry | 2005

QMQSAR: Utilization of a semiempirical probe potential in a field‐based QSAR method

Steven L. Dixon; Kenneth M. Merz; Giorgio Lauri; James C. Ianni

A semiempirical quantum mechanical approach is described for the creation of molecular field‐based QSAR models from a set of aligned ligand structures. Each ligand is characterized by a set of probe interaction energy (PIE) values computed at various grid points located near the surface of the ligand. Single‐point PM3 calculations afford these PIE values, which represents a pool of independent variables from which multilinear regression models of activity are built. The best n‐variable fit is determined by constructing an initial regression using standard forward stepwise selection, followed by refinement using a simulated annealing technique. The resulting fit provides an easily interpreted 3D physical model of ligand binding affinity. Validation against three literature datasets demonstrates the ability of the semiempirical potential to model critical binding interactions in diverse systems.


Journal of Computer-aided Molecular Design | 2015

Exploring conformational search protocols for ligand-based virtual screening and 3-D QSAR modeling

Daniel Cappel; Steven L. Dixon; Woody Sherman; Jianxin Duan

Abstract3-D ligand conformations are required for most ligand-based drug design methods, such as pharmacophore modeling, shape-based screening, and 3-D QSAR model building. Many studies of conformational search methods have focused on the reproduction of crystal structures (i.e. bioactive conformations); however, for ligand-based modeling the key question is how to generate a ligand alignment that produces the best results for a given query molecule. In this work, we study different conformation generation modes of ConfGen and the impact on virtual screening (Shape Screening and e-Pharmacophore) and QSAR predictions (atom-based and field-based). In addition, we develop a new search method, called common scaffold alignment, that automatically detects the maximum common scaffold between each screening molecule and the query to ensure identical coordinates of the common core, thereby minimizing the noise introduced by analogous parts of the molecules. In general, we find that virtual screening results are relatively insensitive to the conformational search protocol; hence, a conformational search method that generates fewer conformations could be considered “better” because it is more computationally efficient for screening. However, for 3-D QSAR modeling we find that more thorough conformational sampling tends to produce better QSAR predictions. In addition, significant improvements in QSAR predictions are obtained with the common scaffold alignment protocol developed in this work, which focuses conformational sampling on parts of the molecules that are not part of the common scaffold.


Bioorganic & Medicinal Chemistry | 2012

Hole filling and library optimization: Application to commercially available fragment libraries

Yuling An; Woody Sherman; Steven L. Dixon

Compound libraries comprise an integral component of drug discovery in the pharmaceutical and biotechnology industries. While in-house libraries often contain millions of molecules, this number pales in comparison to the accessible space of drug-like molecules. Therefore, care must be taken when adding new compounds to an existing library in order to ensure that unexplored regions in the chemical space are filled efficiently while not needlessly increasing the library size. In this work, we present an automated method to fill holes in an existing library using compounds from an external source and apply it to commercially available fragment libraries. The method, called Canvas HF, uses distances computed from 2D chemical fingerprints and selects compounds that fill vacuous regions while not suffering from the problem of selecting only compounds at the edge of the chemical space. We show that the method is robust with respect to different databases and the number of requested compounds to retrieve. We also present an extension of the method where chemical properties can be considered simultaneously with the selection process to bias the compounds toward a desired property space without imposing hard property cutoffs. We compare the results of Canvas HF to those obtained with a standard sphere exclusion method and with random compound selection and find that Canvas HF performs favorably. Overall, the method presented here offers an efficient and effective hole-filling strategy to augment compound libraries with compounds from external sources. The method does not have any fit parameters and therefore it should be applicable in most hole-filling applications.


Journal of Cheminformatics | 2011

Analysis and comparison of 2D fingerprints: insights into database screening performance using eight fingerprint methods

Jianxin Duan; G. Madhavi Sastry; Steven L. Dixon; Jeffrey F. Lowrie; Woody Sherman

Virtual screening is a widely used strategy in modern drug discovery and 2D fingerprint similarity is an important tool that has been successfully applied to retrieve active compounds from large datasets. However, it is not always straightforward to select appropriate fingerprint method and associated settings for a given problem. Here, we applied eight different fingerprint methods, as implemented in the new cheminformatics package Canvas, on a well validated dataset covering five targets. The fingerprint methods include Linear, Dendritic, Radial, MACCS, MOLPRINT2D, Pairwise, Triplet, and Torsion. We find that most fingerprints have similar retrieval rates on average; however, each has special characteristics that distinguish its performance on different query molecules and ligand sets. For example, some fingerprints exhibit a significant ligand size dependency whereas others are more robust with respect to variations in the query or active compounds. In cases where little information is known about the active ligands, MOLPRINT2D fingerprints produce the highest average retrieval actives. When multiple queries are available, we find that a fingerprint averaged over all query molecules is generally superior to fingerprints derived from single queries. Finally, a complementarity metric is proposed to determine which fingerprint methods can be combined to improve screening results. A more systematic virtual screening study has also been conducted to investigate the interrelation between eight fingerprinting methods, eleven atomtyping schemes, seven bit scaling rules, and four similarity metrics. In total, 24,068 virtual screens were performed to assess the effectiveness of each combination of options to identify active ligands in a database screen performed on 11 pharmaceutically relevant targets. Significant variations in enrichments were observed with all explored parameters. In general, fingerprints such as MOLPRINT2D and Dendritic that contain information about local environment beyond simple linear paths outperformed other fingerprint methods. Atomtyping schemes with more specific information were generally superior to more generic atomtyping schemes. With the best identified settings, enrichment factors across all targets could be improved considerably. No single combination of settings performed optimally on all targets and therefore we provide recommendations to improve enrichments based on different requirements.

Collaboration


Dive into the Steven L. Dixon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge