Steven L. Percival
West Virginia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Steven L. Percival.
Wound Repair and Regeneration | 2012
Steven L. Percival; Katja E. Hill; David Wynne Williams; Samuel James Hooper; David William Thomas; John William Costerton
Both chronic and acute dermal wounds are susceptible to infection due to sterile loss of the innate barrier function of the skin and dermal appendages, facilitating the development of microbial communities, referred to as biofilms, within the wound environment. Microbial biofilms are implicated in both the infection of wounds and failure of those wounds to heal. The aim of this review is to provide a summary of published papers detailing biofilms in wounds, the effect they have on infection and wound healing, and detailing methods employed for their detection. The studies highlighted within this paper provide evidence that biofilms reside within the chronic wound and represent an important mechanism underlying the observed, delayed healing and infection. The reasons for this include both protease activity and immunological suppression. Furthermore, a lack of responsiveness to an array of antimicrobial agents has been due to the biofilms’ ability to inherently resist antimicrobial agents. It is imperative that effective strategies are developed, tested prospectively, and employed in chronic wounds to support the healing process and to reduce infection rates. It is increasingly apparent that adoption of a biofilm‐based management approach to wound care, utilizing the “antibiofilm tool box” of therapies, to kill and prevent reattachment of microorganisms in the biofilm is producing the most positive clinical outcomes and prevention of infection.
Wound Repair and Regeneration | 2008
Steven L. Percival; Phil Bowler; Emma Woods
To date the effect of silver‐containing wound dressings on biofilms, known to be present in chronic wounds, has not been determined or documented. In this current study, we aimed to determine the antimicrobial effect of a silver‐containing dressing on biofilms grown in a chambered slide model. Before the addition of a wound dressing onto a 24‐hour biofilm, composed of either Pseudomonas aeruginosa, Enterobacter cloacae, Staphylococcus aureus, or a mixed bacterial community, a fluorescent dye was applied. This enabled the viability of sessile bacteria to be monitored in real‐time, using a rapid form of confocal laser scanning microscopy over a contact time period of 48 hours. By analyzing all the three‐dimensional data generated from the confocal time‐lapse sequences, 90% of all sessile bacteria within the biofilm were observed to progressively turn red (i.e., died) within 24 hours. Total bacterial kill in the biofilm was achieved after 48 hours. This research has shown that the dressing was effective in killing the tested bacteria evident in both the tested mono and polymicrobial biofilms, which provides valuable evidence that this dressing may have an effect on biofilms found in recalcitrant chronic wounds.
Wound Repair and Regeneration | 2011
Steven L. Percival; Katja E. Hill; Sladjana Malic; David William Thomas; David Wynne Williams
The application of antimicrobials in the management of wounds is a complex procedure requiring appropriate clinical decision making, judgment and a thorough understanding of antimicrobial therapies, together with their potential disadvantages. There is considerable direct and indirect evidence for the presence of bacterial biofilms in the chronic wound bed, and it has been demonstrated that bacteria within these biofilms may exhibit both specific and nonspecific antimicrobial tolerance. The antimicrobial tolerance of biofilms is a major concern in the treatment of both infected and nonhealing chronic wounds and an understanding of the mechanisms involved is of fundamental importance in managing wound infections and developing future wound management strategies. The aim of this review is therefore to provide an overview of our current understanding of the mechanisms by which bacteria in wound biofilms can resist conventional antibiotic and antibacterial therapies which is very important to wound healing.
Wound Repair and Regeneration | 2012
Sara McCarty; Christine A. Cochrane; Peter D. Clegg; Steven L. Percival
Cutaneous wound healing is orchestrated by a number of physiological pathways that ultimately lead to reformation of skin integrity and the production of functional scar tissue. The remodeling of a wound is significantly affected by matrix metalloproteinases (MMPs), which act to control the degradation of the extracellular matrix (ECM). Regulation of MMPs is imperative for wound healing as excessive levels of MMPs can lead to disproportionate destruction of the wound ECM compared to ECM deposition. In addition to human MMPs, bacterial proteases have been found to be influential in tissue breakdown and, as such, have a role to play in the healing of infected wounds. For example, the zinc‐metalloproteinase, elastase, produced by Pseudomonas aeruginosa, induces degradation of fibroblast proteins and proteoglycans in chronic wounds and has also been shown to degrade host immune cell mediators. Microbial extracellular enzymes have also been shown to degrade human wound fluid and inhibit fibroblast cell growth. It is now being acknowledged that host and bacterial MMPs may act synergistically to cause tissue breakdown within the wound bed. Several studies have suggested that bacterial‐derived secreted proteases may act to up‐regulate the levels of MMPs produced by the host cells. Together, these findings indicate that bacterial phenotype in terms of protease producing potential of bacteria should be taken into consideration during diagnostic and clinical intervention of infected wound management. Furthermore, both host MMPs and those derived from infecting bacteria need to be targeted in order to increase the healing capacity of the injured tissue. The aim of this review is to investigate the evidence suggestive of a relationship between unregulated levels of both host and bacterial proteases and delayed wound healing.
International Wound Journal | 2012
Steven L. Percival; Charlotte Emanuel; Keith Cutting; David Wynne Williams
The integrity of human skin is central to the prevention of infection. Acute and chronic wounds can develop when the integrity of skin as a barrier to infection is disrupted. As a multi‐functional organ, skin possesses important biochemical and physical properties that influence its microbiology. These properties include a slightly acidic pH, a low moisture content, a high lipid content (which results in increased hydrophobicity) and the presence of antimicrobial peptides. Such factors have a role to play in preventing exogenous microbial colonisation and subsequent infection. In addition, the properties of skin both select for and enhance colonisation and biofilm formation by certain ‘beneficial’ micro‐organisms. These beneficial micro‐organisms can provide further protection against colonisation by potential pathogens, a process known as colonisation resistance. The aim of this paper is to summarise the microflora of skin and wounds, highlighting the role of certain micro‐organisms and biofilms in associated infections.
International Wound Journal | 2009
Jia V Loh; Steven L. Percival; Emma Woods; Nicola Williams; Christine A. Cochrane
Methicillin‐resistant Staphylococcusaureus (MRSA) colonises skin, nasal passages and dermal wounds. Methods used to manage wounds infected and colonised with MRSA often include the use of topical antiseptics such as ionic silver and iodine. The objectives of this study were to determine the prevalence of silver‐resistance (sil) genes in MRSA and methicillin‐resistant coagulase‐negative staphylococci (MR‐CNS) isolated from wounds and nasal cavities of humans and animals, and also to determine the susceptibility of sil‐positive and sil‐negative MRSA isolates to a silver‐containing Hydrofiber® (SCH) wound dressing, on planktonic silE‐positive and silE‐negative MRSA. Polymerase chain reaction was used to determine the presence of three silver‐resistance (sil) genes, silE, silP and silS in 33 MRSA and 8 methicillin‐resistant staphylococci (MR‐CNS). SilP and silS genes were absent in all isolates tested; however, two MRSA strains were found to contain the silE gene, together with one isolate of MR‐CNS. Phenotypic resistance of the silE‐positive strains and their susceptibility to the SCH dressing was evaluated using the zone of inhibition test on Mueller Hinton agar, and confocal laser microscopy using a live/dead fluorescent stain. Results confirmed that the SCH dressing was effective in killing all MRSA strains with and without the silE gene. First, this study showed that the prevalence of sil genes was low in the isolates investigated; and secondly, that the presence of a silver‐resistance gene (silE) in MRSA and MR‐CNS did not afford protection to the organism in the presence of a SCH wound dressing. The use of topical antiseptics in chronic wound care should be considered before the use of antibiotics that can result in their overuse and the risk of further resistance.
International Wound Journal | 2010
Steven L. Percival; John G. Thomas; David Wynne Williams
Microbial imbalances and synergistic relationships between bacteria in medically important biofilms are poorly researched. Consequently, little is known about how synergy between bacteria may increase the net pathogenic effect of a biofilm in many diseases and infections, including chronic wounds. Microbial synergy in chronic wounds may increase virulence and pathogenicity, leading to enhanced tissue degradation, malodour and in some cases, an impairment of the host immune response. Microbial synergy and growth within a biofilm provide a competitive advantage to the microorganisms cohabiting in a wound, thereby promoting their survival and tolerance and resistance to antimicrobial agents. The aim of this article was to provide greater insight into microbial imbalances found within wound biofilms and the significance they may have on non healing and infected wounds. We also present two possible hypotheses which could explain the role microorganisms play in non healing chronic wounds and offer possible strategies for combating harmful and detrimental biofilms.
Veterinary Microbiology | 2009
Emma Woods; Christine A. Cochrane; Steven L. Percival
The aim of this study was to investigate the prevalence of silver resistance genes in 172 bacterial strains which had been isolated from both human and equine wounds. PCR screening for 8 currently named genes in 3 silver resistance transcriptional units, silE, silRS and silP, silCBA and silF was performed on total DNA extracted from all clinical isolates. Plasmids were isolated from sil-positive strains to determine if the genes were present on the chromosome. MICs and zone of inhibition assays were utilised to examine phenotypic resistance to silver nitrate and ionic silver. Evidence of silver resistance genes was demonstrated in six strains of Enterobacter cloacae, an organism rarely implicated as a primary pathogen in chronic wounds. MIC data showed that all strains were inhibited at silver nitrate concentrations > or =5mg/L. When tested against a silver-containing absorbent wound dressing all strains showed inhibition of growth after 24h. In MIC and zone of inhibition studies, inhibition was evident but reduced in strains which contained sil genes. Although sil genes were found in six of the wound isolates studied, the genes were consistently associated with a non-pathogenic bacterium. Furthermore, investigation of phenotypic resistance in sil-positive isolates showed that silver continued to be effective.
Veterinary Microbiology | 2011
Westgate Sj; Steven L. Percival; Derek C. Knottenbelt; Peter D. Clegg; Christine A. Cochrane
Horse wounds have a high risk of becoming infected due to their environment. Infected wounds harbour diverse populations of microorganisms, however in some cases these microorganisms can be difficult to identify and fail to respond to antibiotic treatment, resulting in chronic non-healing wounds. In human wounds this has been attributed to the ability of bacteria to survive in a biofilm phenotypic state. Biofilms are known to delay wound healing, principally due to their recalcitrance towards antimicrobial therapies and components of the innate immune response. This study describes the presence of bacterial biofilms within equine wounds. Thirteen 8-mm diameter tissue samples were collected from (n=18) chronic wounds. Following histological staining, samples were observed for evidence of biofilms. Fifty one wounds and control skin sites were sampled using sterile swabs. Control skin sites were on the uninjured side of the horse at the same anatomical location as the wound. The isolated bacteria were cultured aerobically and anaerobically. The biofilm forming potential of all the isolated bacteria was determined using a standard crystal violet microtitre plate assay. Stained tissue samples provided evidence of biofilms within 61.5% (8 out of 13) equine wounds. In total 340 bacterial isolates were identified from all the equine wound and skin samples. Pseudomonas aeruginosa and Enterococcus faecium were the most predominantly isolated bacterial species from equine wound and skin samples respectively. Staphylococcus was the most commonly isolated genus in both environments. Bacteria cultured from chronic and acute wounds showed significantly (P<0.05) higher biofilm forming potential than bacteria isolated from skin. This paper highlights preliminary evidence supporting the presence of biofilms and a high microbial diversity in equine chronic wounds. The presence of biofilms in equine wounds partly explains the reluctance of many lower limb wounds to heal. Non-healing limb wounds in horses are a well documented welfare and economic concern. This knowledge can be used to shape future treatments in order to increase the healing rate and decrease the costs and suffering associate with equine wounds.
International Wound Journal | 2010
Hilde Beele; Frans Meuleneire; Marc Nahuys; Steven L. Percival
The aim of this study was to observe both the clinical signs and symptoms of wounds at risk of infection, that is critically colonised (biofilm infected) and antimicrobial‐performance of an ionic silver alginate/carboxymethylcellulose (SACMC) dressing, in comparison with a non silver calcium alginate fibre (AF) dressing, on chronic venous leg and pressure ulcers. Thirty‐six patients with venous or pressure ulcers, considered clinically to be critically colonised (biofilm infected), were randomly chosen to receive either an SACMC dressing or a non silver calcium AF dressing. The efficacy of each wound dressing was evaluated over a 4‐week period. The primary study endpoints were prevention of infection and progression to wound healing. The SACMC group showed a statistically significant (P = 0·017) improvement to healing as indicated by a reduction in the surface area of the wound, over the 4‐week study period, compared with AF controls. In conclusion, the SACMC dressing showed a greater ability to prevent wounds progressing to infection when compared with the AF control dressing. In addition, the results of this study also showed an improvement in wound healing for SACMC when compared with a non silver dressing.