Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven L. Smock is active.

Publication


Featured researches published by Steven L. Smock.


Journal of Cellular Physiology | 2003

Expression of connective tissue growth factor in bone: its role in osteoblast proliferation and differentiation in vitro and bone formation in vivo.

Fayez F. Safadi; Jie Xu; Steven L. Smock; Reem A. Kanaan; Abdulhafez Selim; Paul R. Odgren; Sandy C. Marks; Thomas A. Owen; Steven N. Popoff

Connective tissue growth factor (CTGF) is a secreted, extracellular matrix‐associated signaling protein that regulates diverse cellular functions. In vivo, CTGF is expressed in many tissues with highest levels in the kidney and brain. The purpose of this study was twofold; first, to localize CTGF in normal bone in vivo during growth and repair, and second, to examine CTGF expression and function in primary osteoblast cultures in vitro and test its effect on bone formation in vivo. Northern and Western blot analyses confirmed that CTGF is expressed in normal long bones during the period of growth or modeling. In situ hybridization and immunohistochemical analysis demonstrated intense staining for CTGF mRNA and protein in osteoblasts lining metaphyseal trabeculae. Examination of CTGF expression in the fracture callus demonstrated that it was primarily localized in osteoblasts lining active, osteogenic surfaces. In primary osteoblast cultures, CTGF mRNA levels demonstrated a bimodal pattern of expression, being high during the peak of the proliferative period, abating as the cells became confluent, and increasing to peak levels and remaining high during mineralization. This pattern suggests that CTGF may play a role in osteoblast proliferation and differentiation as previously demonstrated for fibroblasts and chondrocytes. Treatment of primary osteoblast cultures with anti‐CTGF neutralizing antibody caused a dose‐dependent inhibition of nodule formation and mineralization. Treatment of primary osteoblast cultures with recombinant CTGF (rCTGF) caused an increase in cell proliferation, alkaline phosphatase activity, and calcium deposition, thereby establishing a functional connection between CTGF and osteoblast differentiation. In vivo delivery of rCTGF into the femoral marrow cavity induced osteogenesis that was associated with increased angiogenesis. This study clearly shows that CTGF is important for osteoblast development and function both in vitro and in vivo.


Endocrinology | 1998

Effects of CP-336,156, a New, Nonsteroidal Estrogen Agonist/Antagonist, on Bone, Serum Cholesterol, Uterus, and Body Composition in Rat Models.

Hua Zhu Ke; Vishwas M. Paralkar; William A. Grasser; D. Todd Crawford; Hong Qi; H.A. Simmons; C.M. Pirie; Kristin L. Chidsey-Frink; Thomas A. Owen; Steven L. Smock; Hong Ka Chen; Webster S. S. Jee; Kimberly O'keefe Cameron; Robert Louis Rosati; Thomas A. Brown; Paul DaSilva-Jardine; David Duane Thompson

We have discovered a new, nonsteroidal, potent estrogen agonist/antagonist, CP-336,156. CP-336,156 binds selectively and with high affinity to the human estrogen receptor-α with a half-inhibition concentration of 1.5 nm, which is similar to that seen with estradiol (4.8 nm). When given orally to immature (3-week-old) female Sprague-Dawley rats for 3 days at doses of 0.1, 1.0, 10, or 100 μg/kg·day, unlike 17α-ethynyl estradiol, CP-336,156 had no effect on uterine wet or dry weight. Similarly, no uterine hypertrophy was observed in aged (17-month-old) female rats treated (po) with CP-336,156 at 10 or 100 μg/kg·day for 28 days. We also found that CP-336,156 decreased total serum cholesterol and fat body mass and had no effect on lean body mass in these aged female rats. In 5-month-old ovariectomized (OVX) Sprague-Dawley female rats, CP-336,156 completely prevented OVX-induced increases in body weight gain, total serum cholesterol, and serum osteocalcin at doses between 10 and 1000 μg/kg·day after 4 weeks. At...


Journal of Cellular Biochemistry | 2002

Cloning and characterization of osteoactivin, a novel cDNA expressed in osteoblasts.

Fayez F. Safadi; Jie Xu; Steven L. Smock; Mario C. Rico; Thomas A. Owen; Steven N. Popoff

Osteoblast development is a complex process involving the expression of specific growth factors and regulatory proteins that control cell proliferation, differentiation, and maturation. In this study, we used the rat mutation, osteopetrosis (op), to examine differences in skeletal gene expression between mutant op and normal littermates. Total RNA isolated from long bone and calvaria was used as a template for mRNA differential display. One of many cDNAs that were selectively expressed in either normal or mutant bone was cloned and sequenced and found to share some homology to the human nmb and Pmel 17 genes. This novel cDNA was named osteoactivin. Osteoactivin has an open reading frame of 1716 bp that encodes a protein of 572 amino acids with a predicted molecular weight of 63.8 kD. Protein sequence analysis revealed the presence of a signal peptide and a cleavage site at position 23. The protein also has thirteen predicted N‐linked glycosylation sites and a potential RGD integrin recognition site at position 556. Northern blot analysis confirmed that osteoactivin was 3‐ to 4‐fold overexpressed in op versus normal bone. RT‐PCR analysis showed that osteoactivin is most highly expressed in bone compared with any of the other non‐osseous tissues examined. In situ hybridization analysis of osteoactivin in normal bone revealed that it is primarily expressed in osteoblasts actively engaged in bone matrix production and mineralization. In primary rat osteoblast cultures, osteoactivin showed a temporal pattern of expression being expressed at highest levels during the later stages of matrix maturation and mineralization and correlated with the expression of alkaline phosphatase and osteocalcin. Our findings show that osteoactivin expression in bone is osteoblast‐specific and suggest that it may play an important role in osteoblast differentiation and matrix mineralization. Furthermore, osteoactivin overexpression in op mutant bone may be secondary to the uncoupling of bone resorption and formation resulting in abnormalities in osteoblast gene expression and function. J. Cell. Biochem. 84: 12–26, 2002.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Proline-rich tyrosine kinase 2 regulates osteoprogenitor cells and bone formation, and offers an anabolic treatment approach for osteoporosis

Leonard Buckbinder; D.T. Crawford; Hong Qi; Hua Zhu Ke; Lisa M. Olson; Kelly R. Long; Peter C. Bonnette; Amy Baumann; John E. Hambor; William A. Grasser; Lydia Codetta Pan; Thomas A. Owen; Michael Joseph Luzzio; Catherine A. Hulford; David Gebhard; Vishwas M. Paralkar; H.A. Simmons; John Charles Kath; W. Gregory Roberts; Steven L. Smock; Angel Guzman-Perez; Thomas A. Brown; Mei Li

Bone is accrued and maintained primarily through the coupled actions of bone-forming osteoblasts and bone-resorbing osteoclasts. Cumulative in vitro studies indicated that proline-rich tyrosine kinase 2 (PYK2) is a positive mediator of osteoclast function and activity. However, our investigation of PYK2−/− mice did not reveal evidence supporting an essential function for PYK2 in osteoclasts either in vivo or in culture. We find that PYK2−/− mice have high bone mass resulting from an unexpected increase in bone formation. Consistent with the in vivo findings, mouse bone marrow cultures show that PYK2 deficiency enhances differentiation and activity of osteoprogenitor cells, as does expressing a PYK2-specific short hairpin RNA or dominantly interfering proteins in human mesenchymal stem cells. Furthermore, the daily administration of a small-molecule PYK2 inhibitor increases bone formation and protects against bone loss in ovariectomized rats, an established preclinical model of postmenopausal osteoporosis. In summary, we find that PYK2 regulates the differentiation of early osteoprogenitor cells across species and that inhibitors of the PYK2 have potential as a bone anabolic approach for the treatment of osteoporosis.


Journal of Cellular Physiology | 2002

Regulation of BMP-7 expression by retinoic acid and prostaglandin E2

Vishwas M. Paralkar; William A. Grasser; A.L. Mansolf; Amy Baumann; Thomas A. Owen; Steven L. Smock; S. Martinovic; Fran Borovečki; Slobodan Vukicevic; Hua Zhu Ke; David Duane Thompson

Bone morphogenetic proteins (BMPs) are members of the transforming growth factor‐beta (TGF‐β) gene superfamily of growth and differentiation factors. Members of the BMP family were originally cloned and characterized by their ability to induce ectopic bone formation. Of the various BMPs cloned, the bone inductive ability of BMP‐7 (OP‐1) and BMP‐2 has been well characterized. Both BMP‐7 and ‐2 have been shown to have clinical utility in the healing of non‐union fractures. However, in spite of the various advances in BMP research, the physiological regulation of BMPs is not well understood. Here we studied the expression of BMP‐7 by cloning a 4.6‐kB fragment of the human BMP‐7 promoter (hBMP‐7p) and placing it upstream of a luciferase reporter. The promoter reporter construct was stably transfected into different cell backgrounds and its regulation by various factors was investigated. We show that retinoic acid (RA) treatment results in an upregulation of the hBMP‐7p reporter activity. This regulation of the hBMP‐7p was further confirmed by Northern blot, PCR, and Western blot analyses, which showed an increase in both BMP‐7 mRNA and protein expression upon treatment with RA. We further show that RA specifically upregulates expression of osteocalcin via activation of BMP‐7 mRNA and protein in vitro. Similarly, prostaglandin E2 (PGE2) treatment increases BMP‐7 mRNA and protein levels, but does not transcriptionally activate the hBMP‐7p. Additionally, in vivo expression of BMP‐7 in bone was increased upon PGE2 treatment. In conclusion, RA and PGE2 upregulate BMP‐7 protein expression both in vitro and in vivo. J. Cell. Physiol. 190: 207–217, 2002.


Journal of Cellular Biochemistry | 2000

Cloning the full‐length cDNA for rat connective tissue growth factor: Implications for skeletal development

Jie Xu; Steven L. Smock; Fayez F. Safadi; Andrew B. Rosenzweig; Paul R. Odgren; Sandy C. Marks; Thomas A. Owen; Steven N. Popoff

The mammalian osteopetroses represent a pathogenetically diverse group of skeletal disorders characterized by excess bone mass resulting from reduced osteoclastic bone resorption. Abnormalities involving osteoblast function and skeletal development have also been reported in many forms of the disease. In this study, we used the rat mutation, osteopetrosis (op), to examine differences in skeletal gene expression between op mutants and their normal littermates. RNA isolated from calvaria and long bones was used as a template for mRNA‐differential display. Sequence information for one of the many cDNA that were selectively expressed in either normal or mutant bone suggested that it is the rat homologue of connective tissue growth factor (CTGF) previously cloned in the human, mouse, and other species. A consensus sequence was assembled from overlapping 5′‐RACE clones and used to confirm the rat CTGF cDNA protein coding region. Northern blot analysis confirmed that this message was highly (8‐ to 10‐fold) over‐expressed in op versus normal bone; it was also upregulated in op kidney but none of the other tissues (brain, liver, spleen, thymus) examined. In primary rat osteoblast cultures, the CTGF message exhibits a temporal pattern of expression dependent on their state of differentiation. Furthermore, CTGF expression is regulated by prostaglandin E2, a factor known to modulate osteoblast differentiation. Since members of the CTGF family regulate the expression of specific genes, such as collagen and fibronectin, we propose that CTGF may play a previously unreported role in normal skeletal modeling/remodeling. Its dramatic over‐expression in the op mutant skeleton may be secondary to the uncoupling of bone resorption and bone formation resulting in dysregulation of osteoblast gene expression and function. J. Cell. Biochem. 77:103–115, 2000.


Molecular and Cellular Biochemistry | 2001

Molecular cloning and functional characterization of the canine androgen receptor

Bihong Lu; Steven L. Smock; Tessa A. Castleberry; Thomas A. Owen

Sex steroids, including testosterone, play a major role in determining peak bone mass in mammals and the subsequent loss of total bone mass with advancing age. Testosterone, and its active metabolite dihydrotestosterone (DHT), bind with high affinity to the androgen receptor (AR), a member of the nuclear hormone receptor superfamily. These receptors function as transcription factors, binding together with accessory proteins to specific DNA response elements in the promoters of androgen responsive genes. To further characterize AR function in a model species of relevance to bone and pharmaceutical research, we cloned a partial canine AR from a canine kidney cDNA library and then cloned the remaining 5′ segment by PCR from canine ventral prostate cDNA. The complete sequence obtained was 3577 bp. This sequence contained a single open reading frame of 2721 bp, potentially encoding a protein of 907 amino acids with a predicted molecular weight of 98.7 kD. Sequence analysis of the protein encoded by this open reading frame reveals that the modular domains providing the DNA binding and ligand binding functions are identical to those reported for eight other mammalian ARs. Northern analysis of poly-A+ RNA from ventral prostate revealed three very low abundance transcripts of approximately 9 kb and RT-PCR analysis showed relatively high expression of AR in canine ventral prostate, testis, and kidney, with lower levels detectable in spleen, skeletal muscle, heart, and liver. Competition binding studies using 3H-DHT as ligand demonstrated specific displacement by DHT, testosterone, and the anabolic steroid stanozolol, with IC50 values of 1.3, 2.5 and 3.8 nM, respectively. Binding of DHT also resulted in the stimulation of an androgen responsive-luciferase reporter following cotransfection with the canine AR into 293 cells. Immunohistochemistry using an antibody directed to the C-terminal 19 amino acids of the human AR showed strong staining of the secretory epithelial cells in canine ventral prostate. Together, these data indicate that we have cloned the canine AR and that its functional DNA binding and ligand binding domains are absolutely conserved with those reported for eight other species.


Prostaglandins & Other Lipid Mediators | 1999

Molecular cloning and characterization of the canine prostaglandin E receptor EP2 subtype

Tessa A Hibbs; Bihong Lu; Steven L. Smock; Pia Vestergaard; Lydia Codetta Pan; Thomas A. Owen

Prostaglandin E2 (PGE2) binds to four G-protein coupled cell surface receptors (EP1-EP4) and has been implicated as a local mediator of bone anabolism via a cyclic AMP mediated pathway following activation of the EP2 and/or EP4 receptor subtype. A canine kidney cDNA library was screened using a human EP2 probe, and a clone with an open reading frame of 1083 bp, potentially encoding a protein of 361 amino acids, was characterized. This open reading frame has 89% identity to the human EP2 cDNA at the nucleotide level and 87% identity at the predicted protein level. Scatchard analysis of a CHO cell line stably transfected with canine EP2 yielded a dissociation constant of 22 nM for PGE2. Competition binding studies, using 3H-PGE2 as ligand, demonstrated specific displacement by PGE2, Prostaglandin E1, Prostaglandin A3, and butaprost (an EP2 selective ligand), but not by ligands with selectivity for the related DP, FP, IP, or TP receptors. Specific ligand binding also resulted in increased levels of cAMP in EP2 transfected cells with no evidence of short-term, ligand-induced desensitization. Northern blot analysis revealed two transcripts of 3300 and 2400 bp in canine lung, and reverse-transcription polymerase chain reaction showed expression in all tissues examined. Southern blot analysis suggests the presence of a single-copy gene for EP2 in the dog.


Endocrinology | 1994

Presence of messenger ribonucleic acid encoding osteocalcin, a marker of bone turnover, in bone marrow megakaryocytes and peripheral blood platelets

Mark A. Thiede; Steven L. Smock; Donna N. Petersen; William A. Grasser; David Duane Thompson; Satoru K. Nishimoto


Critical Reviews in Eukaryotic Gene Expression | 2003

Anti-osteoactivin antibody inhibits osteoblast differentiation and function in vitro.

Abdulhafez Selim; Samir M. Abdelmagid; Reem A. Kanaan; Steven L. Smock; Thomas A. Owen; Steven N. Popoff; Fayez F. Safadi

Collaboration


Dive into the Steven L. Smock's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sandy C. Marks

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul R. Odgren

University of Massachusetts Medical School

View shared research outputs
Researchain Logo
Decentralizing Knowledge