Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven L. Warner is active.

Publication


Featured researches published by Steven L. Warner.


Clinical Cancer Research | 2013

An Epithelial–Mesenchymal Transition Gene Signature Predicts Resistance to EGFR and PI3K Inhibitors and Identifies Axl as a Therapeutic Target for Overcoming EGFR Inhibitor Resistance

Lauren Averett Byers; Lixia Diao; Jing Wang; Pierre Saintigny; Luc Girard; Michael Peyton; Li Shen; Youhong Fan; Uma Giri; Praveen Tumula; Monique B. Nilsson; Jayanthi Gudikote; Hai T. Tran; Robert J. Cardnell; David J. Bearss; Steven L. Warner; Jason M. Foulks; Steven B. Kanner; Varsha Gandhi; Nancy L. Krett; Steven T. Rosen; Edward S. Kim; Roy S. Herbst; George R. Blumenschein; J. Jack Lee; Scott M. Lippman; K. Kian Ang; Gordon B. Mills; Waun Ki Hong; John N. Weinstein

Purpose: Epithelial–mesenchymal transition (EMT) has been associated with metastatic spread and EGF receptor (EGFR) inhibitor resistance. We developed and validated a robust 76-gene EMT signature using gene expression profiles from four platforms using non–small cell lung carcinoma (NSCLC) cell lines and patients treated in the Biomarker-Integrated Approaches of Targeted Therapy for Lung Cancer Elimination (BATTLE) study. Experimental Design: We conducted an integrated gene expression, proteomic, and drug response analysis using cell lines and tumors from patients with NSCLC. A 76-gene EMT signature was developed and validated using gene expression profiles from four microarray platforms of NSCLC cell lines and patients treated in the BATTLE study, and potential therapeutic targets associated with EMT were identified. Results: Compared with epithelial cells, mesenchymal cells showed significantly greater resistance to EGFR and PI3K/Akt pathway inhibitors, independent of EGFR mutation status, but more sensitivity to certain chemotherapies. Mesenchymal cells also expressed increased levels of the receptor tyrosine kinase Axl and showed a trend toward greater sensitivity to the Axl inhibitor SGI-7079, whereas the combination of SGI-7079 with erlotinib reversed erlotinib resistance in mesenchymal lines expressing Axl and in a xenograft model of mesenchymal NSCLC. In patients with NSCLC, the EMT signature predicted 8-week disease control in patients receiving erlotinib but not other therapies. Conclusion: We have developed a robust EMT signature that predicts resistance to EGFR and PI3K/Akt inhibitors, highlights different patterns of drug responsiveness for epithelial and mesenchymal cells, and identifies Axl as a potential therapeutic target for overcoming EGFR inhibitor resistance associated with the mesenchymal phenotype. Clin Cancer Res; 19(1); 279–90. ©2012 AACR.


Molecular Cancer Therapeutics | 2010

S110, a 5-Aza-2′-Deoxycytidine–Containing Dinucleotide, Is an Effective DNA Methylation Inhibitor In vivo and Can Reduce Tumor Growth

Jody C. Chuang; Steven L. Warner; David Vollmer; Hariprasad Vankayalapati; Sanjeev Redkar; David J. Bearss; Xiangning Qiu; Christine B. Yoo; Peter A. Jones

Methylation of CpG islands in promoter regions is often associated with gene silencing and aberrant DNA methylation occurs in most cancers, leading to the silencing of some tumor suppressor genes. Reversal of this abnormal hypermethylation by DNA methylation inhibitors is effective in reactivating methylation-silenced tumor suppressor genes both in vitro and in vivo. Several DNA methylation inhibitors have been well studied; the most potent among them is 5-aza-2′-deoxycytidine (5-Aza-CdR), which can induce myelosuppression in patients. S110 is a dinucleotide consisting of 5-Aza-CdR followed by a deoxyguanosine, which we previously showed to be effective in vitro as a DNA methylation inhibitor while being less prone to deamination by cytidine deaminase, making it a promising alternative to 5-Aza-CdR. Here, we show that S110 is better tolerated than 5-Aza-CdR in mice and is as effective in vivo in inducing p16 expression, reducing DNA methylation at the p16 promoter region, and retarding tumor growth in human xenograft. We also show that S110 is effective by both i.p. and s.c. deliveries. S110 therefore is a promising new agent that acts similarly to 5-Aza-CdR and has better stability and less toxicity. Mol Cancer Ther; 9(5); 1443–50. ©2010 AACR.


Molecular Cancer Therapeutics | 2006

Identification of a lead small-molecule inhibitor of the Aurora kinases using a structure-assisted, fragment-based approach

Steven L. Warner; Sridevi Bashyam; Hariprasad Vankayalapati; David J. Bearss; Haiyong Han; Daniel D. Von Hoff; Laurence H. Hurley

Aurora A and Aurora B are potential targets for anticancer drug development due to their roles in tumorigenesis and disease progression. To identify small-molecule inhibitors of the Aurora kinases, we undertook a structure-based design approach that used three-dimensional structural models of the Aurora A kinase and molecular docking simulations of chemical entities. Based on these computational methods, a new generation of inhibitors derived from quinazoline and pyrimidine-based tricyclic scaffolds were synthesized and evaluated for Aurora A kinase inhibitory activity, which led to the identification of 4-(6,7-dimethoxy-9H-1,3,9-triaza-fluoren-4-yl)-piperazine-1-carbothioic acid [4-(pyrimidin-2-ylsulfamoyl)-phenyl]-amide. The lead compound showed selectivity for the Aurora kinases when it was evaluated against a panel of diverse kinases. Additionally, the compound was evaluated in cell-based assays, showing a dose-dependent decrease in phospho-histone H3 levels and an arrest of the cell cycle in the G2-M fraction. Although biological effects were observed only at relatively high concentrations, this chemical series provides an excellent starting point for drug optimization and further development. [Mol Cancer Ther 2006;5(7):1764–72]


Molecular Cancer Therapeutics | 2006

Comparing Aurora A and Aurora B as molecular targets for growth inhibition of pancreatic cancer cells

Steven L. Warner; Ruben M. Munoz; Phillip Stafford; Erich Koller; Laurence H. Hurley; Daniel D. Von Hoff; Haiyong Han

To address the increased need to understand the similarities and differences in targeting Aurora A or Aurora B for the treatment of cancer, we systematically evaluated the relative importance of Aurora A and/or Aurora B as molecular targets using antisense oligonucleotides. It was found that perturbations in Aurora A and Aurora B signaling result in growth arrest and apoptosis preferentially in cancer cells. The biological fingerprints of Aurora A and Aurora B inhibition were compared and contrasted in efforts to identify the superior therapeutic target. Due to the different biological responses, we conclude that each Aurora kinase should be treated as autonomous drug targets, which can be targeted independently or in combination. We observed no advantages to targeting both kinases simultaneously and feel that an Aurora A–targeted therapy may have some beneficial consequences over an Aurora B–targeted therapy, such as mitotic arrest and the rapid induction of apoptosis. [Mol Cancer Ther 2006;5(10):2450–8]


Leukemia | 2015

Receptor tyrosine kinase Axl is required for resistance of leukemic cells to FLT3-targeted therapy in acute myeloid leukemia

Il-Kyoo Park; Bethany L. Mundy-Bosse; Susan P. Whitman; Xiaoli Zhang; Steven L. Warner; David J. Bearss; William Blum; Guido Marcucci; Michael A. Caligiuri

In acute myeloid leukemia (AML), about 25–30% of patients harbor a constitutively active receptor tyrosine kinase (RTK) FLT3 encoded by a FLT3 allele harboring internal tandem duplication (FLT3-ITD) mutation. The presence of FLT3-ITD correlates with poor prognosis in AML and it makes FLT3 an attractive therapeutic target in AML. Unfortunately, to date small-molecule inhibitors of FLT3 have resulted in only partial and transient clinical responses with residual leukemic blasts resistant to FLT3 inhibitors detected in blood or bone marrow. In this study, we investigated whether the RTK Axl is responsible for resistance of FLT3-ITD+ AML cells to PKC412 and AC220, FLT3 inhibitors currently under clinical trials for FLT3-ITD+ AML patients. Upon treatment with PKC412 or AC220, phosphorylation of Axl was significantly enhanced in the FLT3-ITD+ MV4-11 AML cell line and in primary blasts from a FLT3-ITD+ AML patient. Consistently, a PKC412-resistant AML cell line and PKC412-resistant primary blasts from FLT3-ITD+ AML patients had significantly higher levels of constitutively phosphorylated Axl and total Axl when compared with a PKC412-sensitive AML cell line and PKC412-sensitive primary blasts from FLT3-ITD+ AML patients. We also found that resistance of AML cells against the FLT3 inhibitor PKC412 and AC220 was substantially diminished by the inhibition of Axl via a small-molecule inhibitor TP-0903, a soluble receptor Axl fusion protein Axl-Fc or knockdown of Axl gene expression by shRNA. Collectively, our study suggests that Axl is required for resistance of FLT3-ITD+ AML cells against the FLT3 inhibitor PKC412 and AC220, and that inhibition of Axl activation may overcome resistance to FLT3-targeted therapy in FLT3-ITD+ AML.


Leukemia | 2014

The tumor suppressor axis p53/miR-34a regulates Axl expression in B-cell chronic lymphocytic leukemia: implications for therapy in p53-defective CLL patients.

Justin Boysen; Sutapa Sinha; Tammy Price-Troska; Steven L. Warner; David J. Bearss; David S. Viswanatha; Tait D. Shanafelt; Neil E. Kay; Asish K. Ghosh

The tumor suppressor axis p53/miR-34a regulates Axl expression in B-cell chronic lymphocytic leukemia: implications for therapy in p53-defective CLL patients


Neoplasia | 2014

A Small-Molecule Inhibitor of PIM Kinases as a Potential Treatment for Urothelial Carcinomas

Jason M. Foulks; Kent J. Carpenter; Bai Luo; Yong Xu; Anna Senina; Rebecca N. Nix; Ashley Chan; Adrianne Clifford; Marcus Wilkes; David Vollmer; Benjamin Brenning; Shannon Merx; Shuping Lai; Michael V. McCullar; Koc-Kan Ho; Daniel J. Albertson; Lee T. Call; Jared J. Bearss; Sheryl R. Tripp; Ting Liu; Bret Stephens; Alexis Mollard; Steven L. Warner; David J. Bearss; Steven B. Kanner

The proto-oncogene proviral integration site for moloney murine leukemia virus (PIM) kinases (PIM-1, PIM-2, and PIM-3) are serine/threonine kinases that are involved in a number of signaling pathways important to cancer cells. PIM kinases act in downstream effector functions as inhibitors of apoptosis and as positive regulators of G1-S phase progression through the cell cycle. PIM kinases are upregulated in multiple cancer indications, including lymphoma, leukemia, multiple myeloma, and prostate, gastric, and head and neck cancers. Overexpression of one or more PIM family members in patient tumors frequently correlates with poor prognosis. The aim of this investigation was to evaluate PIM expression in low- and high-grade urothelial carcinoma and to assess the role PIM function in disease progression and their potential to serve as molecular targets for therapy. One hundred thirty-seven cases of urothelial carcinoma were included in this study of surgical biopsy and resection specimens. High levels of expression of all three PIM family members were observed in both noninvasive and invasive urothelial carcinomas. The second-generation PIM inhibitor, TP-3654, displays submicromolar activity in pharmacodynamic biomarker modulation, cell proliferation studies, and colony formation assays using the UM-UC-3 bladder cancer cell line. TP-3654 displays favorable human ether-à-go-go-related gene and cytochrome P450 inhibition profiles compared with the first-generation PIM inhibitor, SGI-1776, and exhibits oral bioavailability. In vivo xenograft studies using a bladder cancer cell line show that PIM kinase inhibition can reduce tumor growth, suggesting that PIM kinase inhibitors may be active in human urothelial carcinomas.


Cancer Research | 2013

TIG1 Promotes the Development and Progression of Inflammatory Breast Cancer through Activation of Axl Kinase

Xiaoping Wang; Hitomi Saso; Takayuki Iwamoto; Weiya Xia; Yun Gong; Lajos Pusztai; Wendy A. Woodward; James M. Reuben; Steven L. Warner; David J. Bearss; Gabriel N. Hortobagyi; Mien Chie Hung; Naoto Ueno

Inflammatory breast cancer (IBC) is the most lethal form of breast cancer, but the basis for its aggressive properties are not fully understood. In this study, we report that high tumoral expression of TIG1 (RARRES1), a functionally undefined membrane protein, confers shorter survival in patients with IBC. TIG1 depletion decreased IBC cell proliferation, migration, and invasion in vitro and inhibited tumor growth of IBC cells in vivo. We identified the receptor tyrosine kinase, Axl, as a TIG1-binding protein. TIG1 interaction stablilized Axl by inhibiting its proteasome-dependent degradation. TIG1-depleted IBC cells exhibited reduced Axl expression, inactivation of NF-κB, and downregulation of matrix metalloproteinase-9, indicating that TIG1 regulates invasion of IBC cells by supporting the Axl signaling pathway in IBC cells. Consistent with these results, treatment of IBC cells with the Axl inhibitor SGI-7079 decreased their malignant properties in vitro. Finally, TIG1 expression correlated positively with Axl expression in primary human IBC specimens. Our findings establish that TIG1 positively modifies the malignant properties of IBC by supporting Axl function, advancing understanding of its development and rationalizing TIG1 and Axl as promising therapeutic targets in IBC treatment.


Clinical Cancer Research | 2015

Targeted Axl Inhibition Primes Chronic Lymphocytic Leukemia B Cells to Apoptosis and Shows Synergistic/Additive Effects in Combination with BTK Inhibitors

Sutapa Sinha; Justin Boysen; Michael Nelson; Charla Secreto; Steven L. Warner; David J. Bearss; Connie Lesnick; Tait D. Shanafelt; Neil E. Kay; Asish K. Ghosh

Purpose: B-cell chronic lymphocytic leukemia (CLL) is an incurable disease despite aggressive therapeutic approaches. We previously found that Axl receptor tyrosine kinase (RTK) plays a critical role in CLL B-cell survival. Here, we explored the possibility of using a high-affinity Axl inhibitor as a single agent or in combination with Brutons tyrosine kinase (BTK) inhibitors for future clinical trial to treat patients with CLL. Experimental Design: Expression/activation status of other members of the TAM (e.g., Tyro3, Axl, and MER) family of RTKs in CLL B cells was evaluated. Cells were treated with a high-affinity orally bioavailable Axl inhibitor TP-0903 with or without the presence of CLL bone marrow stromal cells (BMSCs). Inhibitory effects of TP-0903 on the Axl signaling pathway were also evaluated in CLL B cells. Finally, cells were exposed to TP-0903 in combination with BTK inhibitors to determine any synergistic/additive effects of the combination. Results: CLL B cells overexpress Tyro3, but not MER. Of interest, Tyro3 remains as constitutively phosphorylated and forms a complex with Axl in CLL B cells. TP-0903 induces massive apoptosis in CLL B cells with LD50 values of nanomolar ranges. Importantly, CLL BMSCs could not protect the leukemic B cells from TP-0903–induced apoptosis. A marked reduction of the antiapoptotic proteins Mcl-1, Bcl-2, and XIAP and upregulation of the proapoptotic protein BIM in CLL B cells was detected as a result of Axl inhibition. Finally, combination of TP-0903 with BTK inhibitors augments CLL B-cell apoptosis. Conclusions: Administration of TP-0903 either as a single agent or in combination with BTK inhibitors may be effective in treating patients with CLL. Clin Cancer Res; 21(9); 2115–26. ©2015 AACR.


Future Medicinal Chemistry | 2014

Activators of PKM2 in cancer metabolism

Steven L. Warner; Kent J. Carpenter; David J. Bearss

Pyruvate kinase converts phosphoenolpyruvate to pyruvate, catalyzing the rate-limiting step of glycolysis. The M1 isoenzyme of pyruvate kinase (PKM1) is found in adult tissues; whereas, PKM2 is a splicesome variant found in embryonic and cancer cells. PKM2 expression in malignant cells is a result of the tumor microenvironment and is responsible for maintaining a glycolytic phenotype. PKM2 has other nonmetabolic functions in malignant cells, including transcriptional coactivation and protein kinase activity. PKM2 activators have antitumor properties by inducing tetramerization of two PKM2 dimers causing PKM2 to function like PKM1. Restoring PKM2 to PKM1-like levels of activity causes reversal of the Warburg effect in cancer cells. PKM2 activators have therapeutic potential in the treatment of cancer and other metabolic diseases.

Collaboration


Dive into the Steven L. Warner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clifford J. Whatcott

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven Weitman

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Wontak Kim

Brigham Young University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge