Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven Lubbe is active.

Publication


Featured researches published by Steven Lubbe.


Nature Genetics | 2007

A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21.

Ian Tomlinson; Emily L. Webb; Luis Carvajal-Carmona; Peter Broderick; Zoe Kemp; Sarah L. Spain; Steven Penegar; Ian Chandler; Maggie Gorman; Wendy Wood; Ella Barclay; Steven Lubbe; Lynn Martin; Gabrielle S. Sellick; Emma Jaeger; Richard A. Hubner; Ruth Wild; Andrew Rowan; Sarah Fielding; Kimberley Howarth; Andrew Silver; Wendy Atkin; Kenneth Muir; Richard F. Logan; David Kerr; Elaine Johnstone; Oliver M. Sieber; Richard Gray; Huw D. Thomas; Julian Peto

Much of the variation in inherited risk of colorectal cancer (CRC) is probably due to combinations of common low risk variants. We conducted a genome-wide association study of 550,000 tag SNPs in 930 familial colorectal tumor cases and 960 controls. The most strongly associated SNP (P = 1.72 × 10−7, allelic test) was rs6983267 at 8q24.21. To validate this finding, we genotyped rs6983267 in three additional CRC case-control series (4,361 affected individuals and 3,752 controls; 1,901 affected individuals and 1,079 controls; 1,072 affected individuals and 415 controls) and replicated the association, providing P = 1.27 × 10−14 (allelic test) overall, with odds ratios (ORs) of 1.27 (95% confidence interval (c.i.): 1.16–1.39) and 1.47 (95% c.i.: 1.34–1.62) for heterozygotes and rare homozygotes, respectively. Analyses based on 1,477 individuals with colorectal adenoma and 2,136 controls suggest that susceptibility to CRC is mediated through development of adenomas (OR = 1.21, 95% c.i.: 1.10–1.34; P = 6.89 × 10−5). These data show that common, low-penetrance susceptibility alleles predispose to colorectal neoplasia.


Nature Genetics | 2008

Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer

Richard S. Houlston; Emily L. Webb; Peter Broderick; Alan Pittman; Maria Chiara Di Bernardo; Steven Lubbe; Ian Chandler; Jayaram Vijayakrishnan; Kate Sullivan; Steven Penegar; Luis Carvajal-Carmona; Kimberley Howarth; Emma Jaeger; Sarah L. Spain; Axel Walther; Ella Barclay; Lynn Martin; Maggie Gorman; Enric Domingo; Ana Teixeira; David Kerr; Jean-Baptiste Cazier; Iina Niittymäki; Sari Tuupanen; Auli Karhu; Lauri A. Aaltonen; Ian Tomlinson; Susan M. Farrington; Albert Tenesa; James Prendergast

Genome-wide association (GWA) studies have identified multiple loci at which common variants modestly influence the risk of developing colorectal cancer (CRC). To enhance power to identify additional loci with similar effect sizes, we conducted a meta-analysis of two GWA studies, comprising 13,315 individuals genotyped for 38,710 common tagging SNPs. We undertook replication testing in up to eight independent case-control series comprising 27,418 subjects. We identified four previously unreported CRC risk loci at 14q22.2 (rs4444235, BMP4; P = 8.1 × 10−10), 16q22.1 (rs9929218, CDH1; P = 1.2 × 10−8), 19q13.1 (rs10411210, RHPN2; P = 4.6 × 10−9) and 20p12.3 (rs961253; P = 2.0 × 10−10). These findings underscore the value of large sample series for discovery and follow-up of genetic variants contributing to the etiology of CRC.


Nature Genetics | 2007

A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk

Peter Broderick; Luis Carvajal-Carmona; Alan Pittman; Emily L. Webb; Kimberley Howarth; Andrew Rowan; Steven Lubbe; Sarah L. Spain; Kate Sullivan; Sarah Fielding; Emma Jaeger; Jayaram Vijayakrishnan; Zoe Kemp; Maggie Gorman; Ian Chandler; Elli Papaemmanuil; Steven Penegar; Wendy Wood; Gabrielle S. Sellick; Mobshra Qureshi; Ana Teixeira; Enric Domingo; Ella Barclay; Lynn Martin; Oliver M. Sieber; David Kerr; Richard Gray; Julian Peto; Jean Baptiste Cazier; Ian Tomlinson

To identify risk variants for colorectal cancer (CRC), we conducted a genome-wide association study, genotyping 550,163 tag SNPs in 940 individuals with familial colorectal tumor (627 CRC, 313 advanced adenomas) and 965 controls. We evaluated selected SNPs in three replication sample sets (7,473 cases, 5,984 controls) and identified three SNPs in SMAD7 (involved in TGF-β and Wnt signaling) associated with CRC. Across the four sample sets, the association between rs4939827 and CRC was highly statistically significant (Ptrend = 1.0 × 10−12).


Nature Genetics | 2008

Common genetic variants at the CRAC1 (HMPS) locus on chromosome 15q13.3 influence colorectal cancer risk

Emma Jaeger; Emily L. Webb; Kimberley Howarth; Luis Carvajal-Carmona; Andrew Rowan; Peter Broderick; Axel Walther; Sarah L. Spain; Alan Pittman; Zoe Kemp; Kate Sullivan; Karl Heinimann; Steven Lubbe; Enric Domingo; Ella Barclay; Lynn Martin; Maggie Gorman; Ian Chandler; Jayaram Vijayakrishnan; Wendy Wood; Elli Papaemmanuil; Steven Penegar; Mobshra Qureshi; Susan M. Farrington; Albert Tenesa; Jean Baptiste Cazier; David Kerr; Richard Gray; Julian Peto; Malcolm G. Dunlop

We mapped a high-penetrance gene (CRAC1; also known as HMPS) associated with colorectal cancer (CRC) in the Ashkenazi population to a 0.6-Mb region on chromosome 15 containing SCG5 (also known as SGNE1), GREM1 and FMN1. We hypothesized that the CRAC1 locus harbored low-penetrance variants that increased CRC risk in the general population. In a large series of colorectal cancer cases and controls, SNPs near GREM1 and SCG5 were strongly associated with increased CRC risk (for rs4779584, P = 4.44 × 10−14).


Nature Genetics | 2012

Common variation near CDKN1A , POLD3 and SHROOM2 influences colorectal cancer risk

Malcolm G. Dunlop; Sara E. Dobbins; Susan M. Farrington; Angela Jones; Claire Palles; Nicola Whiffin; Albert Tenesa; Sarah L. Spain; Peter Broderick; Li-Yin Ooi; Enric Domingo; Claire Smillie; Marc Henrion; Matthew Frampton; Lynn Martin; Graeme Grimes; Maggie Gorman; Colin A. Semple; Yusanne P Ma; Ella Barclay; James Prendergast; Jean-Baptiste Cazier; Bianca Olver; Steven Penegar; Steven Lubbe; Ian Chander; Luis Carvajal-Carmona; Stephane Ballereau; Amy Lloyd; Jayaram Vijayakrishnan

We performed a meta-analysis of five genome-wide association studies to identify common variants influencing colorectal cancer (CRC) risk comprising 8,682 cases and 9,649 controls. Replication analysis was performed in case-control sets totaling 21,096 cases and 19,555 controls. We identified three new CRC risk loci at 6p21 (rs1321311, near CDKN1A; P = 1.14 × 10−10), 11q13.4 (rs3824999, intronic to POLD3; P = 3.65 × 10−10) and Xp22.2 (rs5934683, near SHROOM2; P = 7.30 × 10−10) This brings the number of independent loci associated with CRC risk to 20 and provides further insight into the genetic architecture of inherited susceptibility to CRC.


PLOS Genetics | 2011

Multiple common susceptibility variants near BMP pathway loci GREM1, BMP4, and BMP2 explain part of the missing heritability of colorectal cancer.

Ian Tomlinson; Luis Carvajal-Carmona; Sara E. Dobbins; Albert Tenesa; Angela Jones; Kimberley Howarth; Claire Palles; Peter Broderick; Emma Jaeger; Susan M. Farrington; Annabelle Lewis; James Prendergast; Alan Pittman; Evropi Theodoratou; Bianca Olver; Marion Walker; Steven Penegar; Ella Barclay; Nicola Whiffin; Lynn Martin; Stephane Ballereau; Amy Lloyd; Maggie Gorman; Steven Lubbe; Bryan Howie; Jonathan Marchini; Clara Ruiz-Ponte; Ceres Fernandez-Rozadilla; Antoni Castells; Angel Carracedo

Genome-wide association studies (GWAS) have identified 14 tagging single nucleotide polymorphisms (tagSNPs) that are associated with the risk of colorectal cancer (CRC), and several of these tagSNPs are near bone morphogenetic protein (BMP) pathway loci. The penalty of multiple testing implicit in GWAS increases the attraction of complementary approaches for disease gene discovery, including candidate gene- or pathway-based analyses. The strongest candidate loci for additional predisposition SNPs are arguably those already known both to have functional relevance and to be involved in disease risk. To investigate this proposition, we searched for novel CRC susceptibility variants close to the BMP pathway genes GREM1 (15q13.3), BMP4 (14q22.2), and BMP2 (20p12.3) using sample sets totalling 24,910 CRC cases and 26,275 controls. We identified new, independent CRC predisposition SNPs close to BMP4 (rs1957636, P = 3.93×10−10) and BMP2 (rs4813802, P = 4.65×10−11). Near GREM1, we found using fine-mapping that the previously-identified association between tagSNP rs4779584 and CRC actually resulted from two independent signals represented by rs16969681 (P = 5.33×10−8) and rs11632715 (P = 2.30×10−10). As low-penetrance predisposition variants become harder to identify—owing to small effect sizes and/or low risk allele frequencies—approaches based on informed candidate gene selection may become increasingly attractive. Our data emphasise that genetic fine-mapping studies can deconvolute associations that have arisen owing to independent correlation of a tagSNP with more than one functional SNP, thus explaining some of the apparently missing heritability of common diseases.


Journal of Clinical Oncology | 2009

Clinical Implications of the Colorectal Cancer Risk Associated With MUTYH Mutation

Steven Lubbe; Maria Chiara Di Bernardo; Ian Chandler; Richard S. Houlston

PURPOSE Biallelic mutations in the base excision DNA repair gene MUTYH predispose to colorectal cancer (CRC). Evidence that monoallelic mutations also confer an elevated CRC risk is controversial. Precise quantification of the CRC risk and the phenotype associated with MUTYH mutations is relevant to the counseling, surveillance, and clinical management of at-risk individuals. METHODS We analyzed a population-based series of 9,268 patients with CRC and 5,064 controls for the Y179C and G396D MUTYH mutations. We related genotypes to phenotype and calculated genotype-specific CRC risks. RESULTS Overall, biallelic mutation status conferred a 28-fold increase in CRC risk (95% CI,17.66 to 44.06); this accounted for 0.3% of CRCs in the cohort. Genotype relative risks of CRC were strongly age dependent, but penetrance was incomplete at age 60 years. CRC that developed in the context of biallelic mutations were microsatellite stable. Biallelic mutation carriers were more likely to have proximal CRC (P = 4.0 x 10(-4)) and synchronous polyps (P = 5.7 x 10(-9)) than noncarriers. The performance characteristics of clinicopathologic criteria for the identification of biallelic mutations are poor. Monoallelic mutation was not associated with an increased CRC risk (odds ratio, 1.07; 95% CI, 0.87 to 1.31). CONCLUSION The high risk and the propensity for proximal disease associated with biallielic MUTYH mutation justify colonoscopic surveillance. Although mutation screening should be directed to patients with APC-negative polyposis and early-onset proximal MSS CRC in whom detection rates will be highest, the expanded phenotype associated with MUTYH mutation needs to be recognized. There is no evidence than monoallelic mutation status per se is clinically important.


Brain | 2014

Parkinson's disease in GTP cyclohydrolase 1 mutation carriers

Niccolo E. Mencacci; Ioannis U. Isaias; Martin M. Reich; Christos Ganos; Vincent Plagnol; James M. Polke; Jose Bras; Joshua Hersheson; Maria Stamelou; Alan Pittman; Alastair J. Noyce; Kin Mok; Thomas Opladen; Erdmute Kunstmann; Sybille Hodecker; Alexander Münchau; Jens Volkmann; Samuel Samnick; Katie Sidle; Tina Nanji; Mary G. Sweeney; Henry Houlden; Amit Batla; Anna Zecchinelli; Gianni Pezzoli; Giorgio Marotta; Andrew J. Lees; Paulo Alegria; Paul Krack; Florence Cormier-Dequaire

Mutations in the gene encoding the dopamine-synthetic enzyme GTP cyclohydrolase-1 (GCH1) cause DOPA-responsive dystonia (DRD). Mencacci et al. demonstrate that GCH1 variants are associated with an increased risk of Parkinsons disease in both DRD pedigrees and in patients with Parkinsons disease but without a family history of DRD.


Gut | 2013

Cumulative impact of common genetic variants and other risk factors on colorectal cancer risk in 42 103 individuals

Malcolm G. Dunlop; Albert Tenesa; Susan M. Farrington; Stephane Ballereau; David H. Brewster; Thibaud Koessler; Paul Pharoah; Clemens Schafmayer; Jochen Hampe; Henry Völzke; Jenny Chang-Claude; Michael Hoffmeister; Hermann Brenner; Susanna von Holst; Simone Picelli; Annika Lindblom; Mark A. Jenkins; John L. Hopper; Graham Casey; David Duggan; Polly A. Newcomb; Anna Abulí; Xavier Bessa; Clara Ruiz-Ponte; Sergi Castellví-Bel; Iina Niittymäki; Sari Tuupanen; Auli Karhu; Lauri A. Aaltonen; Brent W. Zanke

Objective Colorectal cancer (CRC) has a substantial heritable component. Common genetic variation has been shown to contribute to CRC risk. A study was conducted in a large multi-population study to assess the feasibility of CRC risk prediction using common genetic variant data combined with other risk factors. A risk prediction model was built and applied to the Scottish population using available data. Design Nine populations of European descent were studied to develop and validate CRC risk prediction models. Binary logistic regression was used to assess the combined effect of age, gender, family history (FH) and genotypes at 10 susceptibility loci that individually only modestly influence CRC risk. Risk models were generated from case-control data incorporating genotypes alone (n=39 266) and in combination with gender, age and FH (n=11 324). Model discriminatory performance was assessed using 10-fold internal cross-validation and externally using 4187 independent samples. The 10-year absolute risk was estimated by modelling genotype and FH with age- and gender-specific population risks. Results The median number of risk alleles was greater in cases than controls (10 vs 9, p<2.2×10−16), confirmed in external validation sets (Sweden p=1.2×10−6, Finland p=2×10−5). The mean per-allele increase in risk was 9% (OR 1.09; 95% CI 1.05 to 1.13). Discriminative performance was poor across the risk spectrum (area under curve for genotypes alone 0.57; area under curve for genotype/age/gender/FH 0.59). However, modelling genotype data, FH, age and gender with Scottish population data shows the practicalities of identifying a subgroup with >5% predicted 10-year absolute risk. Conclusion Genotype data provide additional information that complements age, gender and FH as risk factors, but individualised genetic risk prediction is not currently feasible. Nonetheless, the modelling exercise suggests public health potential since it is possible to stratify the population into CRC risk categories, thereby informing targeted prevention and surveillance.


Human Molecular Genetics | 2008

Refinement of the basis and impact of common 11q23.1 variation to the risk of developing colorectal cancer

Alan Pittman; Emily L. Webb; Luis Carvajal-Carmona; Kimberley Howarth; Maria Chiara Di Bernardo; Peter Broderick; Sarah L. Spain; Axel Walther; Amy Price; Kate Sullivan; Philip Twiss; Sarah Fielding; Andrew Rowan; Emma Jaeger; Jayaram Vijayakrishnan; Ian Chandler; Steven Penegar; Mobshra Qureshi; Steven Lubbe; Enric Domingo; Zoe Kemp; Ella Barclay; Wendy Wood; Lynn Martin; Maggie Gorman; Huw D. Thomas; Julian Peto; Timothy Bishop; Richard Gray; Eamonn R. Maher

The common single-nucleotide polymorphism (SNP) rs3802842 at 11q23.1 has recently been reported to be associated with risk of colorectal cancer (CRC). To examine this association in detail we genotyped rs3802842 in eight independent case-control series comprising a total of 10 638 cases and 10 457 healthy individuals. A significant association between the C allele of rs3802842 and CRC risk was found (per allele OR = 1.17; 95% confidence interval [CI]: 1.12-1.22; P = 1.08 x 10(-12)) with the risk allele more frequent in rectal than colonic disease (P = 0.02). In combination with 8q21, 8q24, 10p14, 11q, 15q13.3 and 18q21 variants, the risk of CRC increases with an increasing numbers of variant alleles for the six loci (OR(per allele) = 1.19; 95% CI: 1.15-1.23; P(trend) = 7.4 x 10(-24)). Using the data from our genome-wide association study of CRC, LD mapping and imputation, we were able to refine the location of the causal locus to a 60 kb region and screened for coding changes. The absence of exonic mutations in any of the transcripts (FLJ45803, LOC120376, C11orf53 and POU2AF1) mapping to this region makes the association likely to be a consequence of non-coding effects on gene expression.

Collaboration


Dive into the Steven Lubbe's collaboration.

Top Co-Authors

Avatar

Peter Broderick

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Richard S. Houlston

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Ian Chandler

Royal Devon and Exeter Hospital

View shared research outputs
Top Co-Authors

Avatar

Alan Pittman

University College London

View shared research outputs
Top Co-Authors

Avatar

Huw R. Morris

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge