Steven M. Pollard
University of Edinburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Steven M. Pollard.
Nature | 2006
José R. Silva; Ian Chambers; Steven M. Pollard; Austin Smith
Through cell fusion, embryonic stem (ES) cells can erase the developmental programming of differentiated cell nuclei and impose pluripotency. Molecules that mediate this conversion should be identifiable in ES cells. One candidate is the variant homeodomain protein Nanog, which has the capacity to entrain undifferentiated ES cell propagation. Here we report that in fusions between ES cells and neural stem (NS) cells, increased levels of Nanog stimulate pluripotent gene activation from the somatic cell genome and enable an up to 200-fold increase in the recovery of hybrid colonies, all of which show ES cell characteristics. Nanog also improves hybrid yield when thymocytes or fibroblasts are fused to ES cells; however, fewer colonies are obtained than from ES × NS cell fusions, consistent with a hierarchical susceptibility to reprogramming among somatic cell types. Notably, for NS × ES cell fusions elevated Nanog enables primary hybrids to develop into ES cell colonies with identical frequency to homotypic ES × ES fusion products. This means that in hybrids, increased Nanog is sufficient for the NS cell epigenome to be reset completely to a state of pluripotency. We conclude that Nanog can orchestrate ES cell machinery to instate pluripotency with an efficiency of up to 100% depending on the differentiation status of the somatic cell.
Stem Cells | 2006
Robert Blelloch; Zhongde Wang; Alexander Meissner; Steven M. Pollard; Austin Smith; Rudolf Jaenisch
Reprogramming of a differentiated cell nucleus by somatic cell nuclear transplantation is an inefficient process. Following nuclear transfer, the donor nucleus often fails to express early embryonic genes and establish a normal embryonic pattern of chromatin modifications. These defects correlate with the low number of cloned embryos able to produce embryonic stem cells or develop into adult animals. Here, we show that the differentiation and methylation state of the donor cell influence the efficiency of genomic reprogramming. First, neural stem cells, when used as donors for nuclear transplantation, produce embryonic stem cells at a higher efficiency than blastocysts derived from terminally differentiated neuronal donor cells, demonstrating a correlation between the state of differentiation and cloning efficiency. Second, using a hypomorphic allele of DNA methyltransferase‐1, we found that global hypomethylation of a differentiated cell genome improved cloning efficiency. Our results provide functional evidence that the differentiation and epigenetic state of the donor nucleus influences reprogramming efficiency.
The EMBO Journal | 2013
Sevil Sofueva; Eitan Yaffe; Wen-Ching Chan; Dimitra Georgopoulou; Matteo Vietri Rudan; Hegias Mira-Bontenbal; Steven M. Pollard; Gary P. Schroth; Amos Tanay
To ensure proper gene regulation within constrained nuclear space, chromosomes facilitate access to transcribed regions, while compactly packaging all other information. Recent studies revealed that chromosomes are organized into megabase‐scale domains that demarcate active and inactive genetic elements, suggesting that compartmentalization is important for genome function. Here, we show that very specific long‐range interactions are anchored by cohesin/CTCF sites, but not cohesin‐only or CTCF‐only sites, to form a hierarchy of chromosomal loops. These loops demarcate topological domains and form intricate internal structures within them. Post‐mitotic nuclei deficient for functional cohesin exhibit global architectural changes associated with loss of cohesin/CTCF contacts and relaxation of topological domains. Transcriptional analysis shows that this cohesin‐dependent perturbation of domain organization leads to widespread gene deregulation of both cohesin‐bound and non‐bound genes. Our data thereby support a role for cohesin in the global organization of domain structure and suggest that domains function to stabilize the transcriptional programmes within them.
Molecular and Cellular Neuroscience | 2008
Yirui Sun; Steven M. Pollard; Luciano Conti; Mauro Toselli; Gerardo Biella; Georgina Parkin; Lionel Willatt; Austin Smith
Stem cell lines that provide a renewable and scaleable supply of central nervous system cell types would constitute an invaluable resource for basic and applied neurobiology. Here we describe the generation and long-term expansion of multiple human foetal neural stem (NS) cell lines in monolayer culture without genetic immortalization. Adherent human NS cells are propagated in the presence of epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF2), under which conditions they stably express neural precursor markers and exhibit negligible differentiation into neurons or glia. However, they produce astrocytes, oligodendrocytes, and neurons upon exposure to appropriate differentiation factors. Single cell cloning demonstrates that human NS cells are tripotent. They retain a diploid karyotype and constant neurogenic capacity after over 100 generations. In contrast to human neurospheres, we observe no requirement for the cytokine leukaemia inhibitory factor (LIF) for continued expansion of adherent human NS cells. Human NS cells can be stably transfected to provide reporter lines and readily imaged in live monolayer cultures, creating the potential for high content genetic and chemical screens.
PLOS Biology | 2008
Rory Johnson; Christina Hui‐Leng Teh; Galih Kunarso; Kee Yew Wong; Gopalan Srinivasan; Megan Cooper; Manuela Volta; Sarah Su-ling Chan; Leonard Lipovich; Steven M. Pollard; R. Krishna Murthy Karuturi; Chia-lin Wei; Noel J. Buckley; Lawrence W. Stanton
The maintenance of pluripotency and specification of cellular lineages during embryonic development are controlled by transcriptional regulatory networks, which coordinate specific sets of genes through both activation and repression. The transcriptional repressor RE1-silencing transcription factor (REST) plays important but distinct regulatory roles in embryonic (ESC) and neural (NSC) stem cells. We investigated how these distinct biological roles are effected at a genomic level. We present integrated, comparative genome- and transcriptome-wide analyses of transcriptional networks governed by REST in mouse ESC and NSC. The REST recruitment profile has dual components: a developmentally independent core that is common to ESC, NSC, and differentiated cells; and a large, ESC-specific set of target genes. In ESC, the REST regulatory network is highly integrated into that of pluripotency factors Oct4-Sox2-Nanog. We propose that an extensive, pluripotency-specific recruitment profile lends REST a key role in the maintenance of the ESC phenotype.
PLOS ONE | 2012
Philipp Koch; Jaideep Kesavan; Yasuhiro Takashima; Julia Ladewig; Michael Alexander; Ole Wiskow; Matthew Trotter; Steven M. Pollard; Austin Smith; Oliver Brüstle
Human embryonic stem cells (hESC) and induced pluripotent stem cells (iPSC) provide new prospects for studying human neurodevelopment and modeling neurological disease. In particular, iPSC-derived neural cells permit a direct comparison of disease-relevant molecular pathways in neurons and glia derived from patients and healthy individuals. A prerequisite for such comparative studies are robust protocols that efficiently yield standardized populations of neural cell types. Here we show that long-term self-renewing neuroepithelial-like stem cells (lt-NES cells) derived from 3 hESC and 6 iPSC lines in two independent laboratories exhibit consistent characteristics including i) continuous expandability in the presence of FGF2 and EGF; ii) stable neuronal and glial differentiation competence; iii) characteristic transcription factor profile; iv) hindbrain specification amenable to regional patterning; v) capacity to generate functionally mature human neurons. We further show that lt-NES cells are developmentally distinct from fetal tissue-derived radial glia-like stem cells. We propose that lt-NES cells provide an interesting tool for studying human neurodevelopment and may serve as a standard system to facilitate comparative analyses of hESC and hiPSC-derived neural cells from control and diseased genetic backgrounds.
Molecular and Cellular Neuroscience | 2008
Maria B. Goncalves; Philipp Suetterlin; Ping K. Yip; Francisco Molina-Holgado; Deborah J. Walker; Madeleine J. Oudin; Marc P. Zentar; Steven M. Pollard; Rafael J. Yáñez-Muñoz; Gareth Williams; Frank S. Walsh; Menelas N. Pangalos; Patrick Doherty
The subventricular zone (SVZ) is a major site of neurogenesis in the adult. We now show that ependymal and proliferating cells in the adult mouse SVZ express diacylglycerol lipases (DAGLs), enzymes that synthesise a CB1/CB2 cannabinoid receptor ligand. DAGL and CB2 antagonists inhibit the proliferation of cultured neural stem cells, and the proliferation of progenitor cells in young animals. Furthermore, CB2 agonists stimulate progenitor cell proliferation in vivo, with this effect being more pronounced in older animals. A similar response was seen with a fatty acid amide hydrolase (FAAH) inhibitor that limits degradation of endocannabinoids. The effects on proliferation were mirrored in changes in the number of neuroblasts migrating from the SVZ to the olfactory bulb (OB). In this context, CB2 antagonists reduced the number of newborn neurons appearing in the OB in the young adult animals while CB2 agonists stimulated this in older animals. These data identify CB2 receptor agonists and FAAH inhibitors as agents that can counteract the naturally observed decline in adult neurogenesis that is associated with ageing.
PLOS ONE | 2007
Tamara Glaser; Steven M. Pollard; Austin Smith; Oliver Brüstle
Background A recent study has shown that pure neural stem cells can be derived from embryonic stem (ES) cells and primary brain tissue. In the presence of fibroblast growth factor 2 (FGF2) and epidermal growth factor (EGF), this population can be continuously expanded in adherent conditions. In analogy to continuously self-renewing ES cells, these cells were termed ‘NS’ cells (Conti et al., PLoS Biol 3: e283, 2005). While NS cells have been shown to readily generate neurons and astrocytes, their differentiation into oligodendrocytes has remained enigmatic, raising concerns as to whether they truly represent tripotential neural stem cells. Methodology/Principal Findings Here we provide evidence that NS cells are indeed tripotent. Upon proliferation with FGF2, platelet-derived growth factor (PDGF) and forskolin, followed by differentiation in the presence of thyroid hormone (T3) and ascorbic acid NS cells efficiently generate oligodendrocytes (∼20%) alongside astrocytes (∼40%) and neurons (∼10%). Mature oligodendroglial differentiation was confirmed by transplantation data showing that NS cell-derived oligodendrocytes ensheath host axons in the brain of myelin-deficient rats. Conclusions/Significance In addition to delineating NS cells as a potential donor source for myelin repair, our data strongly support the view that these adherently expandable cells represent bona fide tripotential neural stem cells.
Genes & Development | 2013
Stefan H. Stricker; Andrew Feber; Pär G. Engström; Helena Carén; Kathreena M. Kurian; Yasuhiro Takashima; Colin Watts; Michael Way; Peter Dirks; Paul Bertone; Austin Smith; Stephan Beck; Steven M. Pollard
Epigenetic changes are frequently observed in cancer. However, their role in establishing or sustaining the malignant state has been difficult to determine due to the lack of experimental tools that enable resetting of epigenetic abnormalities. To address this, we applied induced pluripotent stem cell (iPSC) reprogramming techniques to invoke widespread epigenetic resetting of glioblastoma (GBM)-derived neural stem (GNS) cells. GBM iPSCs (GiPSCs) were subsequently redifferentiated to the neural lineage to assess the impact of cancer-specific epigenetic abnormalities on tumorigenicity. GiPSCs and their differentiating derivatives display widespread resetting of common GBM-associated changes, such as DNA hypermethylation of promoter regions of the cell motility regulator TES (testis-derived transcript), the tumor suppressor cyclin-dependent kinase inhibitor 1C (CDKN1C; p57KIP2), and many polycomb-repressive complex 2 (PRC2) target genes (e.g., SFRP2). Surprisingly, despite such global epigenetic reconfiguration, GiPSC-derived neural progenitors remained highly malignant upon xenotransplantation. Only when GiPSCs were directed to nonneural cell types did we observe sustained expression of reactivated tumor suppressors and reduced infiltrative behavior. These data suggest that imposing an epigenome associated with an alternative developmental lineage can suppress malignant behavior. However, in the context of the neural lineage, widespread resetting of GBM-associated epigenetic abnormalities is not sufficient to override the cancer genome.
PLOS ONE | 2009
Isabel Martín Caballero; Janne Hansen; Donna Leaford; Steven M. Pollard; Brian Hendrich
Background The precise molecular changes that occur when a neural stem (NS) cell switches from a programme of self-renewal to commit towards a specific lineage are not currently well understood. However it is clear that control of gene expression plays an important role in this process. DNA methylation, a mark of transcriptionally silent chromatin, has similarly been shown to play important roles in neural cell fate commitment in vivo. While DNA methylation is known to play important roles in neural specification during embryonic development, no such role has been shown for any of the methyl-CpG binding proteins (Mecps) in mice. Methodology/Principal Findings To explore the role of DNA methylation in neural cell fate decisions, we have investigated the function of Mecps in mouse development and in neural stem cell derivation, maintenance, and differentiation. In order to test whether the absence of phenotype in singly-mutant animals could be due to functional redundancy between Mecps, we created mice and neural stem cells simultaneously lacking Mecp2, Mbd2 and Zbtb33. No evidence for functional redundancy between these genes in embryonic development or in the derivation or maintenance of neural stem cells in culture was detectable. However evidence for a defect in neuronal commitment of triple knockout NS cells was found. Conclusions/Significance Although DNA methylation is indispensable for mammalian embryonic development, we show that simultaneous deficiency of three methyl-CpG binding proteins genes is compatible with apparently normal mouse embryogenesis. Nevertheless, we provide genetic evidence for redundancy of function between methyl-CpG binding proteins in postnatal mice.