Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven M. Simasko is active.

Publication


Featured researches published by Steven M. Simasko.


Physiology & Behavior | 2006

Modulation of vagal afferent excitation and reduction of food intake by leptin and cholecystokinin

James H. Peters; Steven M. Simasko; Robert C. Ritter

The gut-peptide, cholecystokinin (CCK), reduces food intake by acting at CCK-1 receptors on vagal afferent neurons, whereas the feeding effects of the adipokine hormone, leptin, are associated primarily with its action on receptors (ObRb) in the hypothalamus. Recently, however, ObRb mRNA has been reported in vagal afferent neurons, some of which also express CCK-1 receptor, suggesting that leptin, alone or in cooperation with CCK, might activate vagal afferent neurons, and influence food intake via a vagal route. To evaluate these possibilities we have been examining the cellular and behavioral effects of leptin and CCK on vagal afferent neurons. In cultured vagal afferent neurons leptin and CCK evoked short latency, transient depolarizations, often leading to action potentials, and increases in cytosolic calcium. There was a much higher prevalence of CCK and leptin sensitivity amongst cultured vagal afferent neurons that innervate stomach or duodenum than there was in the overall vagal afferent population. Furthermore, almost all leptin-responsive gastric and duodenal vagal afferents also were sensitive to CCK. Leptin, infused into the upper GI tract arterial supply, reduced meal size, and enhanced satiation evoked by CCK. These results indicate that vagal afferent neurons are activated by leptin, and that this activation is likely to participate in meal termination, perhaps by enhancing vagal sensitivity to CCK. Our findings are consistent with the view that leptin and CCK exert their influence on food intake by accessing multiple neural systems (viscerosensory, motivational, affective and motor) at multiple points along the neuroaxis.


Brain Research | 2003

Tumor necrosis factor α increases cytosolic calcium responses to AMPA and KCl in primary cultures of rat hippocampal neurons

Alok De; James M. Krueger; Steven M. Simasko

Acute behavioral effects of tumor necrosis factor α (TNFα) have been previously reported, however the cellular basis for these actions are unknown. To address this issue we examined the effects of TNFα on AMPA- and depolarization-induced changes in cytosolic Ca2+ in cultured hippocampal neurons. Single cell Ca2+ levels were determined with the fluorescent calcium indicator fura-2. TNFα caused an up-regulation of AMPA (10 μM)- and depolarization (55 mM KCl)-induced Ca2+ responses. This effect occurred within a window of concentrations (1 and 10 ng/ml but not 0.1 or 100 ng/ml) and times (3 and 6 h but not 1 and 24 h). The effect was dependent upon protein synthesis (blocked by cycloheximide) and was prevented by the soluble TNF receptor and by a soluble TNF receptor fragment. Treatment with the soluble TNF receptor fragment also caused a decrease in the basal response. The TNFα treatment protocols did not appear to produce any toxicity to the neurons. Results are consistent with the hypothesis that TNFα regulates proteins known to be involved in neuronal communication (AMPA receptors) and cell regulation (voltage-dependent calcium channels) in a relatively rapid period of time (a few hours). These actions may be related to the behavioral effects produced by TNFα that occur within this time frame.


Brain Research | 2002

GHRH and IL1β increase cytoplasmic Ca2+ levels in cultured hypothalamic GABAergic neurons

Alok De; Lynn Churchill; Ferenc Obál; Steven M. Simasko; James M. Krueger

GHRH and IL1beta regulate sleep via the hypothalamus. However, actions of these substances on neurons are poorly understood. In this study, we found both GHRH (100 nM) and IL1beta (1.2 pM) acutely increased cytosolic Ca(2+) in 7.6 and 4.0% of cultured hypothalamic neurons tested, respectively, and 1.2% of neurons responded to both. The neurons that responded were mostly GABAergic (96, 81, and 100% for GHRH, IL1beta, and dual-responsive neurons, respectively).


American Journal of Physiology-gastrointestinal and Liver Physiology | 2010

Expression of transient receptor potential channels and two-pore potassium channels in subtypes of vagal afferent neurons in rat

Huan Zhao; Leslie K. Sprunger; Steven M. Simasko

Vagal afferent neurons relay important information regarding the control of the gastrointestinal system. However, the ionic mechanisms that underlie vagal activation induced by sensory inputs are not completely understood. We postulate that transient receptor potential (TRP) channels and/or two-pore potassium (K2p) channels are targets for activating vagal afferents. In this study we explored the distribution of these channels in vagal afferents by quantitative PCR after a capsaicin treatment to eliminate capsaicin-sensitive neurons, and by single-cell PCR measurements in vagal afferent neurons cultured after retrograde labeling from the stomach or duodenum. We found that TRPC1/3/5/6, TRPV1-4, TRPM8, TRPA1, TWIK2, TRAAK, TREK1, and TASK1/2 were all present in rat nodose ganglia. Both lesion results and single-cell PCR results suggested that TRPA1 and TRPC1 were preferentially expressed in neurons that were either capsaicin sensitive or TRPV1 positive. Expression of TRPM8 varied dynamically after various manipulations, which perhaps explains the disparate results obtained by different investigators. Last, we also examined ion channel distribution with the A-type CCK receptor (CCK-R(A)) and found there was a significant preference for neurons that express TRAAK to also express CCK-R(A), especially in gut-innervating neurons. These findings, combined with findings from prior studies, demonstrated that background conductances such as TRPC1, TRPA1, and TRAAK are indeed differentially distributed in the nodose ganglia, and not only do they segregate with specific markers, but the degree of overlap is also dependent on the innervation target.


Brain Research | 2005

Glutamate induces the expression and release of tumor necrosis factor-α in cultured hypothalamic cells

Alok De; James M. Krueger; Steven M. Simasko

Tumor necrosis factor-alpha (TNFalpha) affects several CNS functions such as regulation of sleep, body temperature, and feeding during pathology. There is also evidence for TNFalpha involvement in physiological sleep regulation, e.g., TNFalpha induces sleep and brain levels of TNFalpha increase during prolonged wakefulness. The immediate cause of enhanced TNFalpha production in brain is unknown. We investigated whether glutamate could signal TNFalpha production because glutamate is a neurotransmitter associated with cell activation and wakefulness. We used primary cultures of fetal rat hypothalamic cells to examine the expression and release of TNFalpha. Immunostaining for neuron specific enolase revealed that the cultures were 50-60% neuronal and 40-50% non-neuronal cells. TNFalpha was detected in both the media and cells under basal conditions. Stimulation of the cells with 1 mM glutamate for 2 h produced an increase in media content of TNFalpha, whereas cell content was elevated at earlier time points. Using trypan blue exclusion and MTT assays, there was no evidence of cell toxicity with this stimulation protocol. Immunocytochemical staining revealed that TNFalpha was expressed by approximately 25% of the neurons and approximately 75% of the glial cell in the culture. Stimulation of the cultures with glutamate did not increase the percentage of cells expressing TNFalpha. We conclude that TNFalpha is constitutively expressed and released by healthy cultures of hypothalamic cells and that activation of the cells with a non-toxic challenge of glutamate increases TNFalpha production. These findings support the hypothesis that TNFalpha can participate in normal physiological regulation of sleep and feeding.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2011

Circadian integration of sleep-wake and feeding requires NPY receptor-expressing neurons in the mediobasal hypothalamus

Michael F. Wiater; Sanjib Mukherjee; Ai-Jun Li; Thu T. Dinh; Edward M Rooney; Steven M. Simasko; Sue Ritter

Sleep and feeding rhythms are highly coordinated across the circadian cycle, but the brain sites responsible for this coordination are unknown. We examined the role of neuropeptide Y (NPY) receptor-expressing neurons in the mediobasal hypothalamus (MBH) in this process by injecting the targeted toxin, NPY-saporin (NPY-SAP), into the arcuate nucleus (Arc). NPY-SAP-lesioned rats were initially hyperphagic, became obese, exhibited sustained disruption of circadian feeding patterns, and had abnormal circadian distribution of sleep-wake patterns. Total amounts of rapid eye movement sleep (REMS) and non-REMS (NREMS) were not altered by NPY-SAP lesions, but a peak amount of REMS was permanently displaced to the dark period, and circadian variation in NREMS was eliminated. The phase reversal of REMS to the dark period by the lesion suggests that REMS timing is independently linked to the function of MBH NPY receptor-expressing neurons and is not dependent on NREMS pattern, which was altered but not phase reversed by the lesion. Sleep-wake patterns were altered in controls by restricting feeding to the light period, but were not altered in NPY-SAP rats by restricting feeding to either the light or dark period, indicating that disturbed sleep-wake patterns in lesioned rats were not secondary to changes in food intake. Sleep abnormalities persisted even after hyperphagia abated during the static phase of the lesion. Results suggest that the MBH is required for the essential task of integrating sleep-wake and feeding rhythms, a function that allows animals to accommodate changeable patterns of food availability. NPY receptor-expressing neurons are key components of this integrative function.


Brain Research | 1999

Effect of ethanol on calcium regulation in rat fetal hypothalamic cells in culture.

Steven M. Simasko; Nadka Boyadjieva; Alok De; Dipak K. Sarkar

The effects of acute exposure to ethanol on calcium regulation in primary cultures of rat fetal hypothalamic cells was studied with the use of the calcium indicator fura-2 and digital imaging techniques. We found that ethanol caused cytoplasmic calcium to increase in a dose-dependent and reversible manner, and these increases could be observed at pharmacologically relevant doses (34 mM). At 170 mM ethanol 65% of 1059 cells examined responded to ethanol with an increase in cytoplasmic calcium. Removing bath calcium eliminated the ethanol-induced calcium response in most cells (76% of 427 cells). In most cells exposure to thapsigargin (20 nM) had no significant effect on the ethanol-induced calcium increase (87% of 67 cells examined). The ethanol-induced calcium increase was reduced by 79+/-5% (n=110 cells) by the P/Q-type calcium channel blocker omega-agatoxin-TK (20 nM), by 51+/-10% (n=115 cells) by the N-type calcium channel blocker omega-conotoxin-GVIA (100 nM), and by 26+/-3% (n=90 cells) by the T-type calcium channel blocker flunarizine (1 microM). The L-type calcium channel blocker nifedipine (1 microM) had complex actions, sometimes inhibiting and sometimes increasing the calcium response. These results demonstrate that ethanol can directly modulate cytoplasmic calcium levels in hypothalamic cells mostly by a pathway that involves extracellular calcium and voltage-dependent calcium channels, and that this response may participate in the biological effects of acute ethanol exposure.


Endocrinology | 2010

Increased Hypothalamic Signal Transducer and Activator of Transcription 3 Phosphorylation after Hindbrain Leptin Injection

Marieke Ruiter; Patricia Duffy; Steven M. Simasko; Robert C. Ritter

Reduction of food intake and body weight by leptin is attributed largely to its action in the hypothalamus. However, the signaling splice variant of the leptin receptor, LRb, also is expressed in the hindbrain, and leptin injections into the fourth cerebral ventricle or dorsal vagal complex are associated with reductions of feeding and body weight comparable to those induced by forebrain leptin administration. Although these observations suggest direct hindbrain action of leptin on feeding and body weight, the possibility that hindbrain leptin administration also activates the Janus kinase/signal transducer and activator of transcription 3 (STAT3) signaling in the hypothalamus has not been investigated. Confirming earlier work, we found that leptin produced comparable reductions of feeding and body weight when injected into the lateral ventricle or the fourth ventricle. We also found that lateral and fourth ventricle leptin injections produced comparable increases of STAT3 phosphorylation in both the hindbrain and the hypothalamus. Moreover, injection of 50 ng of leptin directly into the nucleus of the solitary tract also increased STAT3 phosphorylation in the hypothalamic arcuate and ventromedial nuclei. Increased hypothalamic STAT3 phosphorylation was not due to elevation of blood leptin concentrations and the pattern of STAT3 phosphorylation did not overlap distribution of the retrograde tracer, fluorogold, injected via the same cannula. Our observations indicate that even small leptin doses administered to the hindbrain can trigger leptin-related signaling in the forebrain, and raise the possibility that STAT3 phosphorylation in the hypothalamus may contribute to behavioral and metabolic changes observed after hindbrain leptin injections.


Behavioural Brain Research | 2009

Chronic alcohol treatment in rats alters sleep by fragmenting periods of vigilance cycling in the light period with extended wakenings

Sanjib Mukherjee; Steven M. Simasko

Studies have shown that disturbed sleep produced by chronic alcohol abuse in humans can predict relapse drinking after periods of abstinence. How alcohol produces disturbed sleep remains unknown. In this study we used a novel analysis of sleep to examine the effects of alcohol on sleep patterns in rats. This analysis separates waking into multiple components and defines a period labeled vigilance cycling (VC) in which the rat rapidly cycles through various vigilance states. These VC episodes are separated by long duration wake (LDW) periods. We find that 6 weeks of alcohol (6% in a liquid diet) caused fragmentation of extended VC episodes that normally occur in the light period. However, total daily amounts of slow-wave sleep (SWS) and rapid-eye movement sleep (REMS) remained constant. The daily amount of wake, SWS, and REMS remained constant because the alcohol treated rats increased the amount of VC in the dark period, and the sleep nature of VC in the dark period became more intense. In addition, we observed more wake and less REMS early in the light period in alcohol treated rats. All effects completely reversed by day 16 of alcohol withdrawal. Comparison of the effects of chronic alcohol to acute alcohol exposure demonstrated the effects of chronic alcohol are due to adaptation and not the acute presence of alcohol. The effects of chronic alcohol treatment in rats mimic the effects reported in humans (REMS suppression, difficulty falling asleep, and difficulty remaining asleep).


Journal of Neuroimmunology | 2013

Capsaicin-sensitive vagal afferent neurons contribute to the detection of pathogenic bacterial colonization in the gut

T.P. Riley; Jason M. Neal-McKinney; D.R. Buelow; Michael E. Konkel; Steven M. Simasko

Vagal activation can reduce inflammation and disease activity in various animal models of intestinal inflammation via the cholinergic anti-inflammatory pathway. In the current model of this pathway, activation of descending vagal efferents is dependent on a signal initiated by stimulation of vagal afferents. However, little is known about how vagal afferents are activated, especially in the context of subclinical or clinical pathogenic bacterial infection. To address this question, we first determined if selective lesions of capsaicin-sensitive vagal afferents altered c-Fos expression in the nucleus of the solitary tract (nTS) after mice were inoculated with either Campylobacter jejuni or Salmonella typhimurium. Our results demonstrate that the activation of nTS neurons by intraluminal pathogenic bacteria is dependent on intact, capsaicin sensitive vagal afferents. We next determined if inflammatory mediators could cause the observed increase in c-Fos expression in the nTS by a direct action on vagal afferents. This was tested by the use of single-cell calcium measurements in cultured vagal afferent neurons. We found that tumor necrosis factor alpha (TNFα) and lipopolysaccharide (LPS) directly activate cultured vagal afferent neurons and that almost all TNFα and LPS responsive neurons were sensitive to capsaicin. We conclude that activation of the afferent arm of the parasympathetic neuroimmune reflex by pathogenic bacteria in the gut is dependent on capsaicin sensitive vagal afferent neurons and that the release of inflammatory mediators into intestinal tissue can be directly sensed by these neurons.

Collaboration


Dive into the Steven M. Simasko's collaboration.

Top Co-Authors

Avatar

Robert C. Ritter

Washington State University

View shared research outputs
Top Co-Authors

Avatar

James H. Peters

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Alok De

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Huan Zhao

Washington State University

View shared research outputs
Top Co-Authors

Avatar

James M. Krueger

Washington State University Spokane

View shared research outputs
Top Co-Authors

Avatar

Sanjib Mukherjee

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Ai-Jun Li

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Dallas C. Kinch

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Sue Ritter

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge