Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven McFarlane is active.

Publication


Featured researches published by Steven McFarlane.


Journal of Virology | 2008

Human Cytomegalovirus Protein pp71 Displaces the Chromatin-Associated Factor ATRX from Nuclear Domain 10 at Early Stages of Infection

Vera Lukashchuk; Steven McFarlane; Roger D. Everett; Chris M. Preston

ABSTRACT The human cytomegalovirus (HCMV) tegument protein pp71, encoded by gene UL82, stimulates viral immediate-early (IE) transcription. pp71 interacts with the cellular protein hDaxx at nuclear domain 10 (ND10) sites, resulting in the reversal of hDaxx-mediated repression of viral transcription. We demonstrate that pp71 displaces an hDaxx-binding protein, ATRX, from ND10 prior to any detectable effects on hDaxx itself and that this event contributes to the role of pp71 in alleviating repression. Introduction of pp71 into cells by transfection, infection with a pp71-expressing herpes simplex virus type 1 vector, or by generation of transformed cell lines promoted the rapid relocation of ATRX from ND10 to the nucleoplasm without alteration of hDaxx levels or localization. A pp71 mutant protein unable to interact with hDaxx did not affect the intranuclear distribution of ATRX. Infection with HCMV at a high multiplicity of infection resulted in rapid displacement of ATRX from ND10, the effect being observed maximally by 2 h after adsorption, whereas infection with the UL82-null HCMV mutant ADsubUL82 did not affect ATRX localization even at 7 h postinfection. Cell lines depleted of ATRX by transduction with shRNA-expressing lentiviruses supported increased IE gene expression and virus replication after infection with ADsubUL82, demonstrating that ATRX has a role in repressing IE transcription. The results show that ATRX, in addition to hDaxx, is a component of cellular intrinsic defenses that limit HCMV IE transcription and that displacement of ATRX from ND10 by pp71 is important for the efficient initiation of viral gene expression.


PLOS Pathogens | 2011

A viral ubiquitin ligase has substrate preferential SUMO targeted ubiquitin ligase activity that counteracts intrinsic antiviral defence

Chris Boutell; Delphine Cuchet-Lourenço; Emila Vanni; Anne Orr; Mandy Glass; Steven McFarlane; Roger D. Everett

Intrinsic antiviral resistance represents the first line of intracellular defence against virus infection. During herpes simplex virus type-1 (HSV-1) infection this response can lead to the repression of viral gene expression but is counteracted by the viral ubiquitin ligase ICP0. Here we address the mechanisms by which ICP0 overcomes this antiviral response. We report that ICP0 induces the widespread proteasome-dependent degradation of SUMO-conjugated proteins during infection and has properties related to those of cellular SUMO-targeted ubiquitin ligases (STUbLs). Mutation of putative SUMO interaction motifs within ICP0 not only affects its ability to degrade SUMO conjugates, but also its capacity to stimulate HSV-1 lytic infection and reactivation from quiescence. We demonstrate that in the absence of this viral countermeasure the SUMO conjugation pathway plays an important role in mediating intrinsic antiviral resistance and the repression of HSV-1 infection. Using PML as a model substrate, we found that whilst ICP0 preferentially targets SUMO-modified isoforms of PML for degradation, it also induces the degradation of PML isoform I in a SUMO modification-independent manner. PML was degraded by ICP0 more rapidly than the bulk of SUMO-modified proteins in general, implying that the identity of a SUMO-modified protein, as well as the presence of SUMO modification, is involved in ICP0 targeting. We conclude that ICP0 has dual targeting mechanisms involving both SUMO- and substrate-dependent targeting specificities in order to counteract intrinsic antiviral resistance to HSV-1 infection.


Journal of Virology | 2011

Early Induction of Autophagy in Human Fibroblasts after Infection with Human Cytomegalovirus or Herpes Simplex Virus 1

Steven McFarlane; James D. Aitken; Jane S. Sutherland; Mary Jane Nicholl; Valerie G. Preston; Chris M. Preston

ABSTRACT The infection of human fetal foreskin fibroblasts (HFFF2) with human cytomegalovirus (HCMV) resulted in the induction of autophagy. This was demonstrated by the increased lipidation of microtubule-associated protein 1 light chain 3 (LC3), a hallmark of autophagy, and by the visualization of characteristic vesicles within infected cells. The response was detected first at 2 h postinfection and persisted for at least 3 days. De novo protein synthesis was not required for the effect, since HCMV that was irradiated with UV light also elicited the response, and furthermore the continuous presence of cycloheximide did not prevent induction. Infection with herpes simplex virus type 1 (HSV-1) under conditions that inhibited viral gene expression provoked autophagy, whereas UV-irradiated respiratory syncytial virus did not. The induction of autophagy occurred when cells were infected with HCMV or HSV-1 that was gradient purified, but HCMV dense bodies and HSV-1 light particles, each of which lack nucleocapsids and genomes, were inactive. The depletion of regulatory proteins Atg5 and Atg7, which are required for autophagy, reduced LC3 modification in response to infection but did not result in any detectable difference in viral or cellular gene expression at early times after infection. The electroporation of DNA into HFFF2 cultures induced the lipidation of LC3 but double-stranded RNA did not, even though both agents stimulated an innate immune response. The results show a novel, early cellular response to the presence of the incoming virion and additionally demonstrate that autophagy can be induced by the presence of foreign DNA within cells.


Virology | 2011

Interaction of the human cytomegalovirus particle with the host cell induces hypoxia-inducible factor 1 alpha.

Steven McFarlane; Mary Jane Nicholl; Jane S. Sutherland; Chris M. Preston

The cellular protein hypoxia-inducible factor 1 alpha (HIF-1α) was induced after infection of human fibroblasts with human cytomegalovirus (HCMV). HCMV irradiated with ultraviolet light (uv-HCMV) also elicited the effect, demonstrating that the response was provoked by interaction of the infecting virion with the cell and that viral gene expression was not required. Although induction of HIF-1α was initiated by an early event, accumulation of the protein was not detected until 9 hours post infection, with levels increasing thereafter. Infection with uv-HCMV resulted in increased abundance of HIF-1α-specific RNA, indicating stimulation of transcription. In addition, greater phosphorylation of the protein kinase Akt was observed, and the activity of this enzyme was required for induction of HIF-1α to occur. HIF-1α controls the expression of many cellular gene products; therefore the findings reveal new ways in which interaction of the HCMV particle with the host cell may cause significant alterations to cellular physiology.


Journal of Virology | 2016

SUMO Ligase Protein Inhibitor of Activated STAT1 (PIAS1) Is a Constituent Promyelocytic Leukemia Nuclear Body Protein That Contributes to the Intrinsic Antiviral Immune Response to Herpes Simplex Virus 1.

James R. Brown; Kristen L. Conn; Peter Wasson; Matthew Charman; Lily Tong; Kyle Grant; Steven McFarlane; Chris Boutell

ABSTRACT Aspects of intrinsic antiviral immunity are mediated by promyelocytic leukemia nuclear body (PML-NB) constituent proteins. During herpesvirus infection, these antiviral proteins are independently recruited to nuclear domains that contain infecting viral genomes to cooperatively promote viral genome silencing. Central to the execution of this particular antiviral response is the small ubiquitin-like modifier (SUMO) signaling pathway. However, the participating SUMOylation enzymes are not fully characterized. We identify the SUMO ligase protein inhibitor of activated STAT1 (PIAS1) as a constituent PML-NB protein. We show that PIAS1 localizes at PML-NBs in a SUMO interaction motif (SIM)-dependent manner that requires SUMOylated or SUMOylation-competent PML. Following infection with herpes simplex virus 1 (HSV-1), PIAS1 is recruited to nuclear sites associated with viral genome entry in a SIM-dependent manner, consistent with the SIM-dependent recruitment mechanisms of other well-characterized PML-NB proteins. In contrast to that of Daxx and Sp100, however, the recruitment of PIAS1 is enhanced by PML. PIAS1 promotes the stable accumulation of SUMO1 at nuclear sites associated with HSV-1 genome entry, whereas the accumulation of other evaluated PML-NB proteins occurs independently of PIAS1. We show that PIAS1 cooperatively contributes to HSV-1 restriction through mechanisms that are additive to those of PML and cooperative with those of PIAS4. The antiviral mechanisms of PIAS1 are counteracted by ICP0, the HSV-1 SUMO-targeted ubiquitin ligase, which disrupts the recruitment of PIAS1 to nuclear domains that contain infecting HSV-1 genomes through mechanisms that do not directly result in PIAS1 degradation. IMPORTANCE Adaptive, innate, and intrinsic immunity cooperatively and efficiently restrict the propagation of viral pathogens. Intrinsic immunity mediated by constitutively expressed cellular proteins represents the first line of intracellular defense against infection. PML-NB constituent proteins mediate aspects of intrinsic immunity to restrict herpes simplex virus 1 (HSV-1) as well as other viruses. These proteins repress viral replication through mechanisms that rely on SUMO signaling. However, the participating SUMOylation enzymes are not known. We identify the SUMO ligase PIAS1 as a constituent PML-NB antiviral protein. This finding distinguishes a SUMO ligase that may mediate signaling events important in PML-NB-mediated intrinsic immunity. Moreover, this research complements the recent identification of PIAS4 as an intrinsic antiviral factor, supporting a role for PIAS proteins as both positive and negative regulators of host immunity to virus infection.


Dna Sequence | 1997

Nucleotide Sequence of a Highly Conserved Region of the Canine p53 Tumour Suppressor Gene

Lubna Nasir; David J. Argyle; Steven McFarlane; S. Reid

An evolutionary conserved region of the canine tumour suppressor gene, p53, was PCR amplified and its DNA sequence determined. The 1003 bp fragment consisted of exons 5 to 8 and the intervening introns. A high level of sequence homology was demonstrated with human sequences, with the evolutionary conserved domains II, III, IV and V being identical.


Virus Research | 2011

Human cytomegalovirus immediate early gene expression in the osteosarcoma line U2OS is repressed by the cell protein ATRX.

Steven McFarlane; Chris M. Preston

The control of human cytomegalovirus (HCMV) immediate early (IE) gene expression in infected human fibroblasts was compared with that in the U2OS human osteosarcoma cells. Viral IE expression was stimulated by the virion protein pp71 and repressed by the cell protein hDaxx in fibroblasts, as expected from published data. Neither of these events occurred in infected U2OS cells, suggesting that this cell line lacks one or more factors that repress HCMV IE expression. The chromatin remodeling factor ATRX is absent from U2OS cells, therefore the effect of introducing this protein by electroporation of plasmid DNA was investigated. Provision of ATRX inhibited HCMV IE expression, and the presence of the HCMV-specified virion phosphoprotein pp71 overcame the repression. The experiments demonstrate that ATRX can act as a cellular intrinsic antiviral defense in U2OS cells by blocking gene expression from incoming HCMV genomes. In contrast, ATRX did not affect the replication of herpes simplex virus type 1, showing that there are differences in the way U2OS cells respond to the presence of the herpesviral genomes.


Cancer Letters | 2000

Cloning, sequence analysis and expression of the cDNAs encoding the canine and equine homologues of the mouse double minute 2 (mdm2) proto-oncogene

Lubna Nasir; Paul D. Burr; Steven McFarlane; Elizabeth A. Gault; H Thompson; David J. Argyle

The mdm2 oncogene is amplified and overexpressed in a variety of human tumours and the oncogenic potential of MDM2 is partly due to its ability to inactivate tumour suppressor p53 function. In the present communication we describe the cloning, sequence analysis and expression of the complete wildtype canine and equine mdm2 cDNAs. The encoded full-length canine and equine cDNAs show strong sequence homology with MDM2 proteins from other species and both cDNAs generate recombinant proteins of approximately 90 kDa. These data will allow for the role of this oncogene to be established in companion animal oncology.


PLOS Pathogens | 2018

Distinct temporal roles for the promyelocytic leukaemia (PML) protein in the sequential regulation of intracellular host immunity to HSV-1 infection

Thamir Alandijany; Ashley P. E. Roberts; Kristen L. Conn; Colin Loney; Steven McFarlane; Anne Orr; Chris Boutell

Detection of viral nucleic acids plays a critical role in the induction of intracellular host immune defences. However, the temporal recruitment of immune regulators to infecting viral genomes remains poorly defined due to the technical difficulties associated with low genome copy-number detection. Here we utilize 5-Ethynyl-2’-deoxyuridine (EdU) labelling of herpes simplex virus 1 (HSV-1) DNA in combination with click chemistry to examine the sequential recruitment of host immune regulators to infecting viral genomes under low multiplicity of infection conditions. Following viral genome entry into the nucleus, PML-nuclear bodies (PML-NBs) rapidly entrapped viral DNA (vDNA) leading to a block in viral replication in the absence of the viral PML-NB antagonist ICP0. This pre-existing intrinsic host defence to infection occurred independently of the vDNA pathogen sensor IFI16 (Interferon Gamma Inducible Protein 16) and the induction of interferon stimulated gene (ISG) expression, demonstrating that vDNA entry into the nucleus alone is not sufficient to induce a robust innate immune response. Saturation of this pre-existing intrinsic host defence during HSV-1 ICP0-null mutant infection led to the stable recruitment of PML and IFI16 into vDNA complexes associated with ICP4, and led to the induction of ISG expression. This induced innate immune response occurred in a PML-, IFI16-, and Janus-Associated Kinase (JAK)-dependent manner and was restricted by phosphonoacetic acid, demonstrating that vDNA polymerase activity is required for the robust induction of ISG expression during HSV-1 infection. Our data identifies dual roles for PML in the sequential regulation of intrinsic and innate immunity to HSV-1 infection that are dependent on viral genome delivery to the nucleus and the onset of vDNA replication, respectively. These intracellular host defences are counteracted by ICP0, which targets PML for degradation from the outset of nuclear infection to promote vDNA release from PML-NBs and the onset of HSV-1 lytic replication.


Journal of Virology | 2016

Novel Role for Protein Inhibitor of Activated STAT 4 (PIAS4) in the Restriction of Herpes Simplex Virus 1 by the Cellular Intrinsic Antiviral Immune Response

Kristen L. Conn; Peter Wasson; Steven McFarlane; Lily Tong; James R. Brown; Kyle Grant; Patricia Domingues; Chris Boutell

ABSTRACT Small ubiquitin-like modifier (SUMO) is used by the intrinsic antiviral immune response to restrict viral pathogens, such as herpes simplex virus 1 (HSV-1). Despite characterization of the host factors that rely on SUMOylation to exert their antiviral effects, the enzymes that mediate these SUMOylation events remain to be defined. We show that unconjugated SUMO levels are largely maintained throughout infection regardless of the presence of ICP0, the HSV-1 SUMO-targeted ubiquitin ligase. Moreover, in the absence of ICP0, high-molecular-weight SUMO-conjugated proteins do not accumulate if HSV-1 DNA does not replicate. These data highlight the continued importance for SUMO signaling throughout infection. We show that the SUMO ligase protein inhibitor of activated STAT 4 (PIAS4) is upregulated during HSV-1 infection and localizes to nuclear domains that contain viral DNA. PIAS4 is recruited to sites associated with HSV-1 genome entry through SUMO interaction motif (SIM)-dependent mechanisms that are destabilized by ICP0. In contrast, PIAS4 accumulates in replication compartments through SIM-independent mechanisms irrespective of ICP0 expression. Depletion of PIAS4 enhances the replication of ICP0-null mutant HSV-1, which is susceptible to restriction by the intrinsic antiviral immune response. The mechanisms of PIAS4-mediated restriction are synergistic with the restriction mechanisms of a characterized intrinsic antiviral factor, promyelocytic leukemia protein, and are antagonized by ICP0. We provide the first evidence that PIAS4 is an intrinsic antiviral factor. This novel role for PIAS4 in intrinsic antiviral immunity contrasts with the known roles of PIAS proteins as suppressors of innate immunity. IMPORTANCE Posttranslational modifications with small ubiquitin-like modifier (SUMO) proteins regulate multiple aspects of host immunity and viral replication. The protein inhibitor of activated STAT (PIAS) family of SUMO ligases is predominantly associated with the suppression of innate immune signaling. We now identify a unique and contrasting role for PIAS proteins as positive regulators of the intrinsic antiviral immune response to herpes simplex virus 1 (HSV-1) infection. We show that PIAS4 relocalizes to nuclear domains that contain viral DNA throughout infection. Depletion of PIAS4, either alone or in combination with the intrinsic antiviral factor promyelocytic leukemia protein, significantly impairs the intrinsic antiviral immune response to HSV-1 infection. Our data reveal a novel and dynamic role for PIAS4 in the cellular-mediated restriction of herpesviruses and establish a new functional role for the PIAS family of SUMO ligases in the intrinsic antiviral immune response to DNA virus infection.

Collaboration


Dive into the Steven McFarlane's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Orr

University of Glasgow

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lily Tong

University of Glasgow

View shared research outputs
Researchain Logo
Decentralizing Knowledge