Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven O. Simmons is active.

Publication


Featured researches published by Steven O. Simmons.


Neurotoxicology and Teratology | 2010

Gene expression changes in developing zebrafish as potential markers for rapid developmental neurotoxicity screening

Chun-Yang Fan; John Cowden; Steven O. Simmons; Stephanie Padilla; Ram Ramabhadran

Hazard information essential to guide developmental neurotoxicity risk assessments is limited for many chemicals. As developmental neurotoxicity testing using rodents is laborious and expensive, alternative species such as zebrafish are being adapted for rapid toxicity screening. Assessing the developmental neurotoxicity potential of chemicals in a rapid throughput mode will be aided by the identification and characterization of transcriptional biomarkers that can be measured accurately and rapidly. To this end, the developmental expression profiles of ten nervous system genes were characterized in 1 to 6 days post fertilization zebrafish embryos/larvae using quantitative real time PCR (qRT-PCR). Transcripts of synapsinII a (syn2a) and myelin basic protein (mbp) increased throughout development, while transcripts of gap43, elavl3, nkx2.2a, neurogenin1 (ngn1), alpha1-tubulin, and glial fibrillary acidic protein (gfap) initially increased, but subsequently declined. Transcripts for nestin and sonic hedgehog a (shha) decreased during development. We tested the responses of these potential biomarkers to developmental neurotoxicant exposure, and found that the expression profiles of a subset of genes were altered both during and after exposure to sublethal doses of ethanol, a known developmental neurotoxicant. Collectively, these data indicate that transcript levels of the candidate genes change during development in patterns which are consistent with literature reports, and that the expression of the transcripts is perturbed by treatment with a developmental neurotoxicant (ethanol). These results suggest that the expression profiles of these genes may be useful biomarkers for rapid evaluation of the developmental neurotoxicity potential of chemicals.


Free Radical Biology and Medicine | 2011

Nrf2 expression modifies influenza A entry and replication in nasal epithelial cells.

Matthew J. Kesic; Steven O. Simmons; Rebecca N. Bauer; Ilona Jaspers

Abstract Influenza infection is a major cause of morbidity and mortality worldwide, especially during pandemics outbreaks. Emerging data indicate that phase II antioxidant enzyme pathways could play a role in virus-associated inflammation and immune clearance. While Nrf2-dependent gene expression is known to modify inflammation, a mechanistic role in viral susceptibility and clearance has yet to be elucidated. Therefore, we utilized differentiated human nasal epithelial cells (NEC) and an enzymatic virus-like particle entry assay, to examine the role Nrf2-dependent gene expression has on viral entry and replication. Herein, lentiviral vectors that express Nrf2-specific short hairpin (sh)-RNA effectively decreased both Nrf2 mRNA and Nrf2 protein expression in transduced human NEC from healthy volunteers. Nrf2 knockdown correlated with a significant increase in influenza virus entry and replication. Conversely, supplementation with the potent Nrf2 activators sulforaphane (SFN) and epigallocatechin gallate (EGCG) significantly decreased viral entry and replication. The suppressive effects of EGCG on viral replication were abolished in cells with knocked-down Nrf2 expression, suggesting a causal relationship between the EGCG-induced activation of Nrf2 and the ability to protect against viral infection. Interestingly, the induction of Nrf2 via nutritional supplements SFN and EGCG increased antiviral mediators/responses: RIG-I, IFN-β, and MxA at baseline in the absence of infection. Our data indicate that there is an inverse relationship between the levels of Nrf2 expression and the viral entry/replication. We also demonstrate that supplementation with Nrf2-activating antioxidants inhibits viral replication in human NEC, which may prove to be an attractive therapeutic intervention. Taken together, these data indicate potential mechanisms by which Nrf2-dependent gene expression regulates susceptibility to influenza in human epithelial cells.


Toxicology in Vitro | 2013

Investigating oxidative stress and inflammatory responses elicited by silver nanoparticles using high-throughput reporter genes in HepG2 cells: Effect of size, surface coating, and intracellular uptake ☆

Raju Y. Prasad; John K. McGee; Micaela G. Killius; Danielle A. Suarez; Carl F. Blackman; David M. DeMarini; Steven O. Simmons

Silver nanoparticles (Ag NP) have been shown to generate reactive oxygen species; however, the association between physicochemical characteristics of nanoparticles and cellular stress responses elicited by exposure has not been elucidated. Here, we examined three key stress-responsive pathways activated by Nrf-2/ARE, NFκB, and AP1 during exposure to Ag NP of two distinct sizes (10 and 75 nm) and coatings (citrate and polyvinylpyrrolidone), as well as silver nitrate (AgNO3), and CeO2 nanoparticles. The in vitro assays assessed the cellular response in a battery of stable luciferase-reporter HepG2 cell lines. We further assessed the impact of Ag NP and AgNO3 exposure on cellular redox status by measuring glutathione depletion. Lastly, we determined intracellular Ag concentration by inductively coupled plasma mass spectroscopy (ICP-MS) and re-analyzed reporter-gene data using these values to estimate the relative potencies of the Ag NPs and AgNO3. Our results show activation of all three stress response pathways, with Nrf-2/ARE displaying the strongest response elicited by each Ag NP and AgNO3 evaluated here. The smaller (10-nm) Ag NPs were more potent than the larger (75-nm) Ag NPs in each stress-response pathway, and citrate-coated Ag NPs had higher intracellular silver concentrations compared with both PVP-coated Ag NP and AgNO3. The cellular stress response profiles after Ag NP exposure were similar to that of AgNO3, suggesting that the oxidative stress and inflammatory effects of Ag NP are likely due to the cytotoxicity of silver ions.


Toxicology and Applied Pharmacology | 2010

Differential transcriptional regulation of IL-8 expression by human airway epithelial cells exposed to diesel exhaust particles

Tamara L. Tal; Steven O. Simmons; Robert Silbajoris; Lisa A. Dailey; Seung Hyun Cho; Ram Ramabhadran; William P. Linak; William Reed; Philip A. Bromberg; James M. Samet

Exposure to diesel exhaust particles (DEP) induces inflammatory signaling characterized by MAP kinase-mediated activation of NFkB and AP-1 in vitro and in bronchial biopsies obtained from human subjects exposed to DEP. NFkB and AP-1 activation results in the upregulation of genes involved in promoting inflammation in airway epithelial cells, a principal target of inhaled DEP. IL-8 is a proinflammatory chemokine expressed by the airway epithelium in response to environmental pollutants. The mechanism by which DEP exposure induces IL-8 expression is not well understood. In the current study, we sought to determine whether DEP with varying organic content induces IL-8 expression in lung epithelial cells, as well as, to develop a method to rapidly evaluate the upstream mechanism(s) by which DEP induces IL-8 expression. Exposure to DEP with varying organic content differentially induced IL-8 expression and IL-8 promoter activity human airway epithelial cells. Mutational analysis of the IL-8 promoter was also performed using recombinant human cell lines expressing reporters linked to the mutated promoters. Treatment with a low organic-containing DEP stimulated IL-8 expression by a mechanism that is predominantly NFkB-dependent. In contrast, exposure to high organic-containing DEP induced IL-8 expression independently of NFkB through a mechanism that requires AP-1 activity. Our study reveals that exposure to DEP of varying organic content induces proinflammatory gene expression through multiple specific mechanisms in human airway epithelial cells. The approaches used in the present study demonstrate the utility of a promoter-reporter assay ensemble for identifying transcriptional pathways activated by pollutant exposure.


Environmental Health Perspectives | 2011

Linking oxidative events to inflammatory and adaptive gene expression induced by exposure to an organic particulate matter component.

Wan Yun Cheng; Jenna M. Currier; Philip A. Bromberg; Robert Silbajoris; Steven O. Simmons; James M. Samet

Background: Toxicological studies have correlated inflammatory effects of diesel exhaust particles (DEP) with its organic constituents, such as the organic electrophile 1,2-naphthoquinone (1,2-NQ). Objective: To elucidate the mechanisms involved in 1,2-NQ–induced inflammatory responses, we examined the role of oxidant stress in 1,2-NQ–induced expression of inflammatory and adaptive genes in a human airway epithelial cell line. Methods: We measured cytosolic redox status and hydrogen peroxide (H2O2) in living cells using the genetically encoded green fluorescent protein (GFP)-based fluorescent indicators roGFP2 and HyPer, respectively. Expression of interleukin-8 (IL-8), cyclooxygenase-2 (COX-2), and heme oxygenase-1 (HO-1) mRNA was measured in BEAS-2B cells exposed to 1,2-NQ for 1–4 hr. Catalase overexpression and metabolic inhibitors were used to determine the role of redox changes and H2O2 in 1,2-NQ–induced gene expression. Results: Cells expressing roGFP2 and HyPer showed a rapid loss of redox potential and an increase in H2O2 of mitochondrial origin following exposure to 1,2-NQ. Overexpression of catalase diminished the H2O2-dependent signal but not the 1,2-NQ–induced loss of reducing potential. Catalase overexpression and inhibitors of mitochondrial respiration diminished elevations in IL-8 and COX-2 induced by exposure to 1,2-NQ, but potentiated HO-1 mRNA levels in BEAS cells. Conclusion: These data show that 1,2-NQ exposure induces mitochondrial production of H2O2 that mediates the expression of inflammatory genes, but not the concurrent loss of reducing redox potential in BEAS cells. 1,2-NQ exposure also causes marked expression of HO-1 that appears to be enhanced by suppression of H2O2. These findings shed light into the oxidant-dependent events that underlie cellular responses to environmental electrophiles.


Environmental Health Perspectives | 2011

Ambient particulate matter induces interleukin-8 expression through an alternative NF-κB (nuclear factor-kappa B) mechanism in human airway epithelial cells.

Robert Silbajoris; Alvaro Osornio-Vargas; Steven O. Simmons; William Reed; Philip A. Bromberg; Lisa A. Dailey; James M. Samet

Background: Exposure to ambient air particulate matter (PM) has been shown to increase rates of cardiopulmonary morbidity and mortality, but the underlying mechanisms are still not well understood. Objective: We examined signaling events involved in the expression of the inflammatory gene interleukin-8 (IL-8) in human airway epithelial cells (HAECs) exposed to ambient PM collected in an urban area of Mexicali, Mexico. Methods: We studied IL-8 expression and regulatory signaling pathways in cultured HAECs exposed to Mexicali PM suspended in media for 0–4 hr. Results: Exposure resulted in a dose-dependent, 2- to 8-fold increase in IL-8 mRNA expression relative to controls. PM exposure induced IL-8 transcriptional activity in BEAS-2B cells that was dependent on the nuclear factor-kappa B (NF-κB) response element in the IL-8 promoter. Chromatin immunoprecipitation (ChIP) assays showed a 3-fold increase in binding of the p65 (RelA) NF-κB isoform to the IL-8 promoter sequence in HAECs exposed to PM. Western blot analyses showed elevated levels of phosphorylation of p65 but no changes in IκBα phosphorylation or degradation. IL-8 expression was blunted in a dose-dependent manner in BEAS-2B cells transduced with a lentivirus encoding a dominant negative p65 mutant in which phosphorylation sites were inactivated. Conclusion: Taken together, these findings show that the increase in IL-8 mRNA expression in HAECs exposed to PM10 (PM ≤ 10 μm in aerodynamic diameter) is mediated through an NF-κB–dependent signaling mechanism that occurs through a pathway involving direct phosphorylation of the transcription factor p65 in the absence of IκBα degradation. These data show that exposure to PM10 in ambient air can induce inflammatory responses by activating specific signaling mechanisms in HAECs.


Toxicological Sciences | 2016

Tiered High-Throughput Screening Approach to Identify Thyroperoxidase Inhibitors Within the ToxCast Phase I and II Chemical Libraries

Katie Paul Friedman; Eric D. Watt; Michael W. Hornung; Joan M. Hedge; Richard S. Judson; Kevin M. Crofton; Keith A. Houck; Steven O. Simmons

High-throughput screening for potential thyroid-disrupting chemicals requires a system of assays to capture multiple molecular-initiating events (MIEs) that converge on perturbed thyroid hormone (TH) homeostasis. Screening for MIEs specific to TH-disrupting pathways is limited in the U.S. Environmental Protection Agency ToxCast screening assay portfolio. To fill 1 critical screening gap, the Amplex UltraRed-thyroperoxidase (AUR-TPO) assay was developed to identify chemicals that inhibit TPO, as decreased TPO activity reduces TH synthesis. The ToxCast phase I and II chemical libraries, comprised of 1074 unique chemicals, were initially screened using a single, high concentration to identify potential TPO inhibitors. Chemicals positive in the single-concentration screen were retested in concentration-response. Due to high false-positive rates typically observed with loss-of-signal assays such as AUR-TPO, we also employed 2 additional assays in parallel to identify possible sources of nonspecific assay signal loss, enabling stratification of roughly 300 putative TPO inhibitors based upon selective AUR-TPO activity. A cell-free luciferase inhibition assay was used to identify nonspecific enzyme inhibition among the putative TPO inhibitors, and a cytotoxicity assay using a human cell line was used to estimate the cellular tolerance limit. Additionally, the TPO inhibition activities of 150 chemicals were compared between the AUR-TPO and an orthogonal peroxidase oxidation assay using guaiacol as a substrate to confirm the activity profiles of putative TPO inhibitors. This effort represents the most extensive TPO inhibition screening campaign to date and illustrates a tiered screening approach that focuses resources, maximizes assay throughput, and reduces animal use.


Toxicology | 2013

Cross-species analysis of thyroperoxidase inhibition by xenobiotics demonstrates conservation of response between pig and rat

Katie B. Paul; Joan M. Hedge; Chitralekha Macherla; Dayne L. Filer; Emily Burgess; Steven O. Simmons; Kevin M. Crofton; Michael W. Hornung

Thyroperoxidase (TPO), the enzyme that catalyzes the synthesis of thyroid hormone, is a known target for thyroid-disrupting chemicals. In vivo toxicological evidence supporting TPO-inhibition as one molecular-initiating event that leads to thyroid disruption is derived largely from rat models; however, a significant fraction of research on the inhibition of TPO by xenobiotics has been conducted using porcine TPO. The current work tested the hypothesis that porcine and rat thyroid microsomes exposed to TPO-inhibiting chemicals would demonstrate different responses in a guaiacol oxidation assay. A primary objective of this work is to establish the degree of concordance between rat and porcine TPO inhibition data. Microsomes were isolated from both rat and pig thyroid glands, and the guaiacol oxidation assay was performed for a training set of 12 chemicals, including previously reported TPO inhibitors, thyroid-disrupting chemicals thought to perturb other targets, and several previously untested chemicals, to determine the relative TPO inhibition responses across species. Concentration-response curves were derived for methimazole (MMI), dibutylphthalate (DBP), diethylhexylphthalate (DEHP), diethylphthalate (DEP), 3,5-dimethylpyrazole-1-methanol (DPM), iopanoic acid (IOA), 2-mercaptobenzothiazole (MBT), sodium perchlorate (PERC), p-nonylphenol (PNP), 4-propoxyphenol (4POP), 6-propylthiouracil (PTU), and triclosan (TCS). MMI, PTU, MBT, DPM, 4POP, and at extremely high concentrations, PERC, inhibited TPO activity. Results demonstrated a strong qualitative concordance of response between the two species. All chemicals that inhibited TPO in porcine microsomes also inhibited TPO in rat microsomes. Hill model-derived IC50 values revealed approximate 1.5- to 50-fold differences in relative potency to MMI between species for positive chemicals. DPM, MBT, 4POP, and PTU exhibited greater relative potency to MMI using rat TPO versus porcine TPO, but rank order potency for inhibition was similar for the other test chemicals, with: PTU>MBT>DPM>4POP>PERC for rat TPO and MBT>PTU>DPM>4POP>PERC for porcine TPO. These data support the extrapolation of porcine TPO data to potential thyroid-disrupting activity in rodent models to evaluate TPO-inhibiting chemicals.


Redox biology | 2014

Role of H2O2 in the oxidative effects of zinc exposure in human airway epithelial cells

Phillip A. Wages; Robert Silbajoris; Adam Speen; Luisa E. Brighton; Andres Henriquez; Haiyan Tong; Philip A. Bromberg; Steven O. Simmons; James M. Samet

Human exposure to particulate matter (PM) is a global environmental health concern. Zinc (Zn2+) is a ubiquitous respiratory toxicant that has been associated with PM health effects. However, the molecular mechanism of Zn2+ toxicity is not fully understood. H2O2 and Zn2+ have been shown to mediate signaling leading to adverse cellular responses in the lung and we have previously demonstrated Zn2+ to cause cellular H2O2 production. To determine the role of Zn2+-induced H2O2 production in the human airway epithelial cell response to Zn2+ exposure. BEAS-2B cells expressing the redox-sensitive fluorogenic sensors HyPer (H2O2) or roGFP2 (EGSH) in the cytosol or mitochondria were exposed to 50 µM Zn2+ for 5 min in the presence of 1 µM of the zinc ionophore pyrithione. Intracellular H2O2 levels were modulated using catalase expression either targeted to the cytosol or ectopically to the mitochondria. HO-1 mRNA expression was measured as a downstream marker of response to oxidative stress induced by Zn2+ exposure. Both cytosolic catalase overexpression and ectopic catalase expression in mitochondria were effective in ablating Zn2+-induced elevations in H2O2. Compartment-directed catalase expression blunted Zn2+-induced elevations in cytosolic EGSH and the increased expression of HO-1 mRNA levels. Zn2+ leads to multiple oxidative effects that are exerted through H2O2-dependent and independent mechanisms.


Chemical Research in Toxicology | 2015

Protein Sulfenylation: A Novel Readout of Environmental Oxidant Stress

Phillip A. Wages; Katelyn S. Lavrich; Zhenfa Zhang; Wan Yun Cheng; Elizabeth M. Corteselli; Avram Gold; Philip A. Bromberg; Steven O. Simmons; James M. Samet

Oxidative stress is a commonly cited mechanism of toxicity of environmental agents. Ubiquitous environmental chemicals such as the diesel exhaust component 1,2-naphthoquinone (1,2-NQ) induce oxidative stress by redox cycling, which generates hydrogen peroxide (H2O2). Cysteinyl thiolate residues on regulatory proteins are subjected to oxidative modification by H2O2 in physiological contexts and are also toxicological targets of oxidant stress induced by environmental contaminants. We investigated whether exposure to environmentally relevant concentrations of 1,2-NQ can induce H2O2-dependent oxidation of cysteinyl thiols in regulatory proteins as a readout of oxidant stress in human airway epithelial cells. BEAS-2B cells were exposed to 0-1000 μM 1,2-NQ for 0-30 min, and levels of H2O2 were measured by ratiometric spectrofluorometry of HyPer. H2O2-dependent protein sulfenylation was measured using immunohistochemistry, immunoblotting, and isotopic mass spectrometry. Catalase overexpression was used to investigate the relationship between H2O2 generation and protein sulfenylation in cells exposed to 1,2-NQ. Multiple experimental approaches showed that exposure to 1,2-NQ at concentrations as low as 3 μM induces H2O2-dependent protein sulfenylation in BEAS-2B cells. Moreover, the time of onset and duration of 1,2-NQ-induced sulfenylation of the regulatory proteins GAPDH and PTP1B showed significant differences. Oxidative modification of regulatory cysteinyl thiols in human lung cells exposed to relevant concentrations of an ambient air contaminant represents a novel marker of oxidative environmental stress.

Collaboration


Dive into the Steven O. Simmons's collaboration.

Top Co-Authors

Avatar

James M. Samet

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Philip A. Bromberg

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Robert Silbajoris

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Kevin M. Crofton

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Phillip A. Wages

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katie B. Paul

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Michael W. Hornung

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Angela R. Buckalew

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Ashley S. Murr

United States Environmental Protection Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge