Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven O. Smith is active.

Publication


Featured researches published by Steven O. Smith.


Nature Structural & Molecular Biology | 2010

Structural conversion of neurotoxic amyloid-[beta]1-42 oligomers to fibrils

Mahiuddin Ahmed; Judianne Davis; Darryl Aucoin; Takeshi Sato; Shivani Ahuja; Saburo Aimoto; James I. Elliott; William E. Van Nostrand; Steven O. Smith

The amyloid-β1–42 (Aβ42) peptide rapidly aggregates to form oligomers, protofibils and fibrils en route to the deposition of amyloid plaques associated with Alzheimers disease. We show that low-temperature and low-salt conditions can stabilize disc-shaped oligomers (pentamers) that are substantially more toxic to mouse cortical neurons than protofibrils and fibrils. We find that these neurotoxic oligomers do not have the β-sheet structure characteristic of fibrils. Rather, the oligomers are composed of loosely aggregated strands whose C termini are protected from solvent exchange and which have a turn conformation, placing Phe19 in contact with Leu34. On the basis of NMR spectroscopy, we show that the structural conversion of Aβ42 oligomers to fibrils involves the association of these loosely aggregated strands into β-sheets whose individual β-strands polymerize in a parallel, in-register orientation and are staggered at an intermonomer contact between Gln15 and Gly37.


Biophysical Journal | 2004

Electrostatic Sequestration of PIP2 on Phospholipid Membranes by Basic/Aromatic Regions of Proteins

Alok Gambhir; Gyöngyi Hangyás-Mihályné; Irina Zaitseva; David S. Cafiso; Jiyao Wang; Diana Murray; Srinivas Pentyala; Steven O. Smith; Stuart McLaughlin

The basic effector domain of myristoylated alanine-rich C kinase substrate (MARCKS), a major protein kinase C substrate, binds electrostatically to acidic lipids on the inner leaflet of the plasma membrane; interaction with Ca2+/calmodulin or protein kinase C phosphorylation reverses this binding. Our working hypothesis is that the effector domain of MARCKS reversibly sequesters a significant fraction of the L-alpha-phosphatidyl-D-myo-inositol 4,5-bisphosphate (PIP2) on the plasma membrane. To test this, we utilize three techniques that measure the ability of a peptide corresponding to its effector domain, MARCKS(151-175), to sequester PIP2 in model membranes containing physiologically relevant fractions (15-30%) of the monovalent acidic lipid phosphatidylserine. First, we measure fluorescence resonance energy transfer from Bodipy-TMR-PIP2 to Texas Red MARCKS(151-175) adsorbed to large unilamellar vesicles. Second, we detect quenching of Bodipy-TMR-PIP2 in large unilamellar vesicles when unlabeled MARCKS(151-175) binds to vesicles. Third, we identify line broadening in the electron paramagnetic resonance spectra of spin-labeled PIP2 as unlabeled MARCKS(151-175) adsorbs to vesicles. Theoretical calculations (applying the Poisson-Boltzmann relation to atomic models of the peptide and bilayer) and experimental results (fluorescence resonance energy transfer and quenching at different salt concentrations) suggest that nonspecific electrostatic interactions produce this sequestration. Finally, we show that the PLC-delta1-catalyzed hydrolysis of PIP2, but not binding of its PH domain to PIP2, decreases markedly as MARCKS(151-175) sequesters most of the PIP2.


Biophysical Journal | 1999

Helix packing in polytopic membrane proteins: role of glycine in transmembrane helix association.

Maryam M. Javadpour; Markus Eilers; Michel Groesbeek; Steven O. Smith

The nature and distribution of amino acids in the helix interfaces of four polytopic membrane proteins (cytochrome c oxidase, bacteriorhodopsin, the photosynthetic reaction center of Rhodobacter sphaeroides, and the potassium channel of Streptomyces lividans) are studied to address the role of glycine in transmembrane helix packing. In contrast to soluble proteins where glycine is a noted helix breaker, the backbone dihedral angles of glycine in transmembrane helices largely fall in the standard alpha-helical region of a Ramachandran plot. An analysis of helix packing reveals that glycine residues in the transmembrane region of these proteins are predominantly oriented toward helix-helix interfaces and have a high occurrence at helix crossing points. Moreover, packing voids are generally not formed at the position of glycine in folded protein structures. This suggests that transmembrane glycine residues mediate helix-helix interactions in polytopic membrane proteins in a fashion similar to that seen in oligomers of membrane proteins with single membrane-spanning helices. The picture that emerges is one where glycine residues serve as molecular notches for orienting multiple helices in a folded protein complex.


Biophysical Journal | 2002

Comparison of Helix Interactions in Membrane and Soluble α-Bundle Proteins

Markus Eilers; Ashish B. Patel; Wei Liu; Steven O. Smith

Helix-helix interactions are important for the folding, stability, and function of membrane proteins. Here, two independent and complementary methods are used to investigate the nature and distribution of amino acids that mediate helix-helix interactions in membrane and soluble alpha-bundle proteins. The first method characterizes the packing density of individual amino acids in helical proteins based on the van der Waals surface area occluded by surrounding atoms. We have recently used this method to show that transmembrane helices pack more tightly, on average, than helices in soluble proteins. These studies are extended here to characterize the packing of interfacial and noninterfacial amino acids and the packing of amino acids in the interfaces of helices that have either right- or left-handed crossing angles, and either parallel or antiparallel orientations. We show that the most abundant tightly packed interfacial residues in membrane proteins are Gly, Ala, and Ser, and that helices with left-handed crossing angles are more tightly packed on average than helices with right-handed crossing angles. The second method used to characterize helix-helix interactions involves the use of helix contact plots. We find that helices in membrane proteins exhibit a broader distribution of interhelical contacts than helices in soluble proteins. Both helical membrane and soluble proteins make use of a general motif for helix interactions that relies mainly on four residues (Leu, Ala, Ile, Val) to mediate helix interactions in a fashion characteristic of left-handed helical coiled coils. However, a second motif for mediating helix interactions is revealed by the high occurrence and high average packing values of small and polar residues (Ala, Gly, Ser, Thr) in the helix interfaces of membrane proteins. Finally, we show that there is a strong linear correlation between the occurrence of residues in helix-helix interfaces and their packing values, and discuss these results with respect to membrane protein structure prediction and membrane protein stability.


Nature Structural & Molecular Biology | 2009

Helix movement is coupled to displacement of the second extracellular loop in rhodopsin activation

Shivani Ahuja; Viktor Hornak; Elsa C. Y. Yan; Natalie Syrett; Joseph A. Goncalves; Amiram Hirshfeld; Martine Ziliox; Thomas P. Sakmar; Mordechai Sheves; Philip J. Reeves; Steven O. Smith; Markus Eilers

The second extracellular loop (EL2) of rhodopsin forms a cap over the binding site of its photoreactive 11-cis retinylidene chromophore. A crucial question has been whether EL2 forms a reversible gate that opens upon activation or acts as a rigid barrier. Distance measurements using solid-state 13C NMR spectroscopy between the retinal chromophore and the β4 strand of EL2 show that the loop is displaced from the retinal binding site upon activation, and there is a rearrangement in the hydrogen-bonding networks connecting EL2 with the extracellular ends of transmembrane helices H4, H5 and H6. NMR measurements further reveal that structural changes in EL2 are coupled to the motion of helix H5 and breaking of the ionic lock that regulates activation. These results provide a comprehensive view of how retinal isomerization triggers helix motion and activation in this prototypical G protein–coupled receptor.


Molecular Cell | 2003

Active and Inactive Orientations of the Transmembrane and Cytosolic Domains of the Erythropoietin Receptor Dimer

Nadine Seubert; Yohan Royer; Judith Staerk; Katharina F. Kubatzky; Virginie Moucadel; Shyam Krishnakumar; Steven O. Smith; Stefan N. Constantinescu

Binding of erythropoietin to the erythropoietin receptor (EpoR) extracellular domain orients the transmembrane (TM) and cytosolic regions of the receptor dimer into an unknown activated conformation. By replacing the EpoR extracellular domain with a dimeric coiled coil, we engineered TM EpoR fusion proteins where the helical TM domains were constrained into seven possible relative orientations. We identify one dimeric TM conformation that imparts full activity to the cytosolic domain of the receptor and signals via JAK2, STAT proteins, and MAP kinase, one partially active orientation that preferentially activates MAP kinase, and one conformation corresponding to the inactive receptor. The active and inactive conformations were independently identified by computational searches for low-energy TM dimeric structures. We propose a specific EpoR-activated interface and suggest its use for structural and signaling studies.


Journal of Molecular Biology | 2002

Crystallographic structure of the K intermediate of bacteriorhodopsin: conservation of free energy after photoisomerization of the retinal.

Brigitte Schobert; Jill R. Cupp-Vickery; Viktor Hornak; Steven O. Smith; Janos K. Lanyi

The K state, an early intermediate of the bacteriorhodopsin photocycle, contains the excess free energy used for light-driven proton transport. The energy gain must reside in or near the photoisomerized retinal, but in what form has long been an open question. We produced the K intermediate in bacteriorhodopsin crystals in a photostationary state at 100K, with 40% yield, and determined its X-ray diffraction structure to 1.43 A resolution. In independent refinements of data from four crystals, the changes are confined mainly to the photoisomerized retinal. The retinal is 13-cis,15-anti, as known from vibrational spectroscopy. The C13=C14 bond is rotated nearly fully to cis from the initial trans configuration, but the C14-C15 and C15=NZ bonds are partially counter-rotated. This strained geometry keeps the direction of the Schiff base N-H bond vector roughly in the extracellular direction, but the angle of its hydrogen bond with water 402, that connects it to the anionic Asp85 and Asp212, is not optimal. Weakening of this hydrogen bond may account for many of the reported features of the infrared spectrum of K, and for its photoelectric signal, as well as the deprotonation of the Schiff base later in the cycle. Importantly, although 13-cis, the retinal does not assume the expected bent shape of this configuration. Comparison of the calculated energy of the increased angle of C12-C13=C14, that allows this distortion, with the earlier reported calorimetric measurement of the enthalpy gain of the K state indicates that a significant part of the excess energy is conserved in the bond strain at C13.


Annual review of biophysics | 2010

Structure and Activation of the Visual Pigment Rhodopsin

Steven O. Smith

Rhodopsin is a specialized G protein-coupled receptor (GPCR) found in vertebrate rod cells. Absorption of light by its 11-cis retinal chromophore leads to rapid photochemical isomerization and receptor activation. Recent results from protein crystallography and NMR spectroscopy show how structural changes on the extracellular side of rhodopsin induced by retinal isomerization are coupled to the motion of membrane-spanning helices to create a G protein binding pocket on the intracellular side of the receptor. The signaling pathway provides a comprehensive explanation for the conservation of specific amino acids and structural motifs across the class A family of GPCRs, as well as for the conservation of selected residues within the visual receptor subfamily. The emerging model of activation indicates that, rather than being unique, the visual receptors provide a basis for understanding the common structural and dynamic elements in the class A GPCRs.


Journal of Chemical Physics | 1993

Symmetry principles in the design of pulse sequences for structural measurements in magic angle spinning nuclear magnetic resonance

R. Tycko; Steven O. Smith

We introduce general symmetry principles that are useful in the design of radio‐frequency excitation sequences for magic angle spinning (MAS) NMR experiments. Sequences derived in accordance with these symmetry principles produce excitations, evolutions, or spectra of nuclear spin systems that are insensitive to the chemical shift anisotropies (CSA) and resonance offsets of the spins. Specific DRAMA (dipolar recovery at the magic angle) sequences are derived. These sequences allow nuclear magnetic dipole–dipole couplings, which are normally averaged to zero by MAS, to be measured or otherwise used in MAS experiments. In numerical simulations of dipolar line shapes and in both simulations and experimental 13C NMR measurements of double‐quantum filtering, DRAMA sequences with appropriate symmetries are shown to be less strongly affected by CSA and resonance offsets than sequences used in earlier work. The practicality of the DRAMA technique is thereby enhanced. We present experimental 13C MAS NMR spectra of...


Journal of Biological Chemistry | 2012

Conformational Differences between Two Amyloid β Oligomers of Similar Size and Dissimilar Toxicity

Ali Reza A. Ladiwala; Jeffrey Litt; Ravi S. Kane; Darryl Aucoin; Steven O. Smith; Swarnim Ranjan; Judianne Davis; William E. Van Nostrand; Peter M. Tessier

Background: The Alzheimer Aβ peptide assembles into multiple small oligomers that are cytotoxic. Results: Increased solvent exposure of hydrophobic residues within non-fibrillar Aβ oligomers of similar size increases cytotoxicity. Conclusion: Aβ non-fibrillar oligomers display size-independent differences in toxicity that are strongly influenced by oligomer conformation. Significance: Identifying the conformational determinants of Aβ-mediated toxicity is critical to understand and treat Alzheimer disease. Several protein conformational disorders (Parkinson and prion diseases) are linked to aberrant folding of proteins into prefibrillar oligomers and amyloid fibrils. Although prefibrillar oligomers are more toxic than their fibrillar counterparts, it is difficult to decouple the origin of their dissimilar toxicity because oligomers and fibrils differ both in terms of structure and size. Here we report the characterization of two oligomers of the 42-residue amyloid β (Aβ42) peptide associated with Alzheimer disease that possess similar size and dissimilar toxicity. We find that Aβ42 spontaneously forms prefibrillar oligomers at Aβ concentrations below 30 μm in the absence of agitation, whereas higher Aβ concentrations lead to rapid formation of fibrils. Interestingly, Aβ prefibrillar oligomers do not convert into fibrils under quiescent assembly conditions but instead convert into a second type of oligomer with size and morphology similar to those of Aβ prefibrillar oligomers. Strikingly, this alternative Aβ oligomer is non-toxic to mammalian cells relative to Aβ monomer. We find that two hydrophobic peptide segments within Aβ (residues 16–22 and 30–42) are more solvent-exposed in the more toxic Aβ oligomer. The less toxic oligomer is devoid of β-sheet structure, insoluble, and non-immunoreactive with oligomer- and fibril-specific antibodies. Moreover, the less toxic oligomer is incapable of disrupting lipid bilayers, in contrast to its more toxic oligomeric counterpart. Our results suggest that the ability of non-fibrillar Aβ oligomers to interact with and disrupt cellular membranes is linked to the degree of solvent exposure of their central and C-terminal hydrophobic peptide segments.

Collaboration


Dive into the Steven O. Smith's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan N. Constantinescu

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pascal Kienlen-Campard

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Wei Liu

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas P. Sakmar

Laboratory of Molecular Biology

View shared research outputs
Researchain Logo
Decentralizing Knowledge