Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven Pawson is active.

Publication


Featured researches published by Steven Pawson.


Journal of Climate | 2011

MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications

Michele M. Rienecker; Max J. Suarez; Ronald Gelaro; Ricardo Todling; Julio T. Bacmeister; Emily Liu; Michael G. Bosilovich; Siegfried D. Schubert; Lawrence L. Takacs; Gi-Kong Kim; Stephen Bloom; Junye Chen; Douglas W. Collins; Austin Conaty; Arlindo da Silva; Wei Gu; Joanna Joiner; Randal D. Koster; Robert Lucchesi; Andrea Molod; Tommy Owens; Steven Pawson; Philip J. Pegion; Christopher R. Redder; Rolf H. Reichle; Franklin R. Robertson; Albert G. Ruddick; Meta Sienkiewicz; John S. Woollen

AbstractThe Modern-Era Retrospective Analysis for Research and Applications (MERRA) was undertaken by NASA’s Global Modeling and Assimilation Office with two primary objectives: to place observations from NASA’s Earth Observing System satellites into a climate context and to improve upon the hydrologic cycle represented in earlier generations of reanalyses. Focusing on the satellite era, from 1979 to the present, MERRA has achieved its goals with significant improvements in precipitation and water vapor climatology. Here, a brief overview of the system and some aspects of its performance, including quality assessment diagnostics from innovation and residual statistics, is given.By comparing MERRA with other updated reanalyses [the interim version of the next ECMWF Re-Analysis (ERA-Interim) and the Climate Forecast System Reanalysis (CFSR)], advances made in this new generation of reanalyses, as well as remaining deficiencies, are identified. Although there is little difference between the new reanalyses i...


Journal of Geophysical Research | 2006

Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past

Veronika Eyring; Neal Butchart; Darryn W. Waugh; Hideharu Akiyoshi; John Austin; Slimane Bekki; G. E. Bodeker; B. A. Boville; C. Brühl; M. P. Chipperfield; Eugene C. Cordero; Martin Dameris; Makoto Deushi; Vitali E. Fioletov; S. M. Frith; Rolando R. Garcia; Andrew Gettelman; Marco A. Giorgetta; Volker Grewe; L. Jourdain; Douglas E. Kinnison; E. Mancini; Elisa Manzini; Marion Marchand; Daniel R. Marsh; Tatsuya Nagashima; Paul A. Newman; J. E. Nielsen; Steven Pawson; G. Pitari

Simulations of the stratosphere from thirteen coupled chemistry-climate models (CCMs) are evaluated to provide guidance for the interpretation of ozone predictions made by the same CCMs. The focus of the evaluation is on how well the fields and processes that are important for determining the ozone distribution are represented in the simulations of the recent past. The core period of the evaluation is from 1980 to 1999 but long-term trends are compared for an extended period (1960–2004). Comparisons of polar high-latitude temperatures show that most CCMs have only small biases in the Northern Hemisphere in winter and spring, but still have cold biases in the Southern Hemisphere spring below 10 hPa. Most CCMs display the correct stratospheric response of polar temperatures to wave forcing in the Northern, but not in the Southern Hemisphere. Global long-term stratospheric temperature trends are in reasonable agreement with satellite and radiosonde observations. Comparisons of simulations of methane, mean age of air, and propagation of the annual cycle in water vapor show a wide spread in the results, indicating differences in transport. However, for around half the models there is reasonable agreement with observations. In these models the mean age of air and the water vapor tape recorder signal are generally better than reported in previous model intercomparisons. Comparisons of the water vapor and inorganic chlorine (Cly) fields also show a large intermodel spread. Differences in tropical water vapor mixing ratios in the lower stratosphere are primarily related to biases in the simulated tropical tropopause temperatures and not transport. The spread in Cly, which is largest in the polar lower stratosphere, appears to be primarily related to transport differences. In general the amplitude and phase of the annual cycle in total ozone is well simulated apart from the southern high latitudes. Most CCMs show reasonable agreement with observed total ozone trends and variability on a global scale, but a greater spread in the ozone trends in polar regions in spring, especially in the Arctic. In conclusion, despite the wide range of skills in representing different processes assessed here, there is sufficient agreement between the majority of the CCMs and the observations that some confidence can be placed in their predictions.


Geophysical Research Letters | 2009

Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming

G. L. Manney; Michael J. Schwartz; Kirstin Krüger; Michelle L. Santee; Steven Pawson; Jae N. Lee; W. H. Daffer; R. Fuller; Nathaniel J. Livesey

A major stratospheric sudden warming (SSW) in January 2009 was the strongest and most prolonged on record. Aura Microwave Limb Sounder (MLS) observations are used to provide an overview of dynamics and transport during the 2009 SSW, and to compare with the intense, long-lasting SSW in January 2006. The Arctic polar vortex split during the 2009 SSW, whereas the 2006 SSW was a vortex displacement event. Winds reversed to easterly more rapidly and reverted to westerly more slowly in 2009 than in 2006. More mixing of trace gases out of the vortex during the decay of the vortex fragments, and less before the fulfillment of major SSW criteria, was seen in 2009 than in 2006; persistent well-defined fragments of vortex and anticyclone air were more prevalent in 2009. The 2009 SSW had a more profound impact on the lower stratosphere than any previously observed SSW, with no significant recovery of the vortex in that region. The stratopause breakdown and subsequent reformation at very high altitude, accompanied by enhanced descent into a rapidly strengthening upper stratospheric vortex, were similar in 2009 and 2006. Many differences between 2006 and 2009 appear to be related to the different character of the SSWs in the two years.


Journal of Climate | 2017

The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2)

Ronald Gelaro; Will McCarty; Max J. Suarez; Ricardo Todling; Andrea Molod; Lawrence L. Takacs; C. A. Randles; Anton Darmenov; Michael G. Bosilovich; Rolf H. Reichle; Krzysztof Wargan; L. Coy; Richard I. Cullather; C. Draper; Santha Akella; Virginie Buchard; Austin Conaty; Arlindo da Silva; Wei Gu; Gi-Kong Kim; Randal D. Koster; Robert Lucchesi; Dagmar Merkova; J. E. Nielsen; Gary Partyka; Steven Pawson; William M. Putman; Michele M. Rienecker; Siegfried D. Schubert; Meta Sienkiewicz

The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) is the latest atmospheric reanalysis of the modern satellite era produced by NASAs Global Modeling and Assimilation Office (GMAO). MERRA-2 assimilates observation types not available to its predecessor, MERRA, and includes updates to the Goddard Earth Observing System (GEOS) model and analysis scheme so as to provide a viable ongoing climate analysis beyond MERRAs terminus. While addressing known limitations of MERRA, MERRA-2 is also intended to be a development milestone for a future integrated Earth system analysis (IESA) currently under development at GMAO. This paper provides an overview of the MERRA-2 system and various performance metrics. Among the advances in MERRA-2 relevant to IESA are the assimilation of aerosol observations, several improvements to the representation of the stratosphere including ozone, and improved representations of cryospheric processes. Other improvements in the quality of MERRA-2 compared with MERRA include the reduction of some spurious trends and jumps related to changes in the observing system, and reduced biases and imbalances in aspects of the water cycle. Remaining deficiencies are also identified. Production of MERRA-2 began in June 2014 in four processing streams, and converged to a single near-real time stream in mid 2015. MERRA-2 products are accessible online through the NASA Goddard Earth Sciences Data Information Services Center (GES DISC).


Journal of Geophysical Research | 2007

Precision requirements for space-based XCO 2 data

Charles E. Miller; David Crisp; Philip L. DeCola; Seth Carlton Olsen; James T. Randerson; Anna M. Michalak; Alanood A. A. A. Alkhaled; P. J. Rayner; Daniel J. Jacob; Parvadha Suntharalingam; Dylan B. A. Jones; A. S. Denning; Melville E. Nicholls; Scott C. Doney; Steven Pawson; Hartmut Boesch; Brian J. Connor; Inez Y. Fung; Denis M. O'Brien; R. J. Salawitch; Stanley P. Sander; Bidyut K. Sen; Pieter P. Tans; G. C. Toon; Paul O. Wennberg; Steven C. Wofsy; Yuk L. Yung; R. M. Law

Precision requirements are determined for space-based column-averaged CO_2 dry air mole fraction (X_(CO)_2) data. These requirements result from an assessment of spatial and temporal gradients in (X_(CO)_2) the relationship between (X_(CO)_2) precision and surface CO_2 flux uncertainties inferred from inversions of the (X_(CO)_2) data, and the effects of (X_(CO)_2) biases on the fidelity of CO_2 flux inversions. Observational system simulation experiments and synthesis inversion modeling demonstrate that the Orbiting Carbon Observatory mission design and sampling strategy provide the means to achieve these (X_(CO)_2) data precision requirements.


Journal of Geophysical Research | 2008

The evolution of the stratopause during the 2006 major warming: Satellite data and assimilated meteorological analyses

G. L. Manney; Kirstin Krüger; Steven Pawson; Ken Minschwaner; Michael J. Schwartz; W. H. Daffer; Nathaniel J. Livesey; Martin G. Mlynczak; Ellis E. Remsberg; James M. Russell; J. W. Waters

Microwave Limb Sounder and Sounding of the Atmosphere with Broadband Emission Radiometry data provide the first opportunity to characterize the four-dimensional stratopause evolution throughout the life-cycle of a major stratospheric sudden warming (SSW). The polar stratopause, usually higher than that at midlatitudes, dropped by ∼30 km and warmed during development of a major “wave 1” SSW in January 2006, with accompanying mesospheric cooling. When the polar vortex broke down, the stratopause cooled and became ill-defined, with a nearly isothermal stratosphere. After the polar vortex started to recover in the upper stratosphere/lower mesosphere (USLM), a cool stratopause reformed above 75 km, then dropped and warmed; both the mesosphere above and the stratosphere below cooled at this time. The polar stratopause remained separated from that at midlatitudes across the core of the polar night jet. In the early stages of the SSW, the strongly tilted (westward with increasing altitude) polar vortex extended into the mesosphere, and enclosed a secondary temperature maximum extending westward and slightly equatorward from the highest altitude part of the polar stratopause over the cool stratopause near the vortex edge. The temperature evolution in the USLM resulted in strongly enhanced radiative cooling in the mesosphere during the recovery from the SSW, but significantly reduced radiative cooling in the upper stratosphere. Assimilated meteorological analyses from the European Centre for Medium-Range weather Forecasts (ECMWF) and Goddard Earth Observing System Version 5.0.1 (GEOS-5), which are not constrained by data at polar stratopause altitudes and have model tops near 80 km, could not capture the secondary temperature maximum or the high stratopause after the SSW; they also misrepresent polar temperature structure during and after the stratopause breakdown, leading to large biases in their radiative heating rates. ECMWF analyses represent the stratospheric temperature structure more accurately, suggesting a better representation of vertical motion; GEOS-5 analyses more faithfully describe stratopause level wind and wave amplitudes. The high-quality satellite temperature data used here provide the first daily, global, multiannual data sets suitable for assessing and, eventually, improving representation of the USLM in models and assimilation systems.


Journal of Geophysical Research | 1999

Persistence of the lower stratospheric polar vortices

Darryn W. Waugh; William J. Randel; Steven Pawson; Paul A. Newman; Eric R. Nash

The persistence of the Arctic and Antarctic lower stratospheric vortices is examined over the period from 1958 to 1999. Three different vortex-following diagnostics (two using potential vorticity and one based solely on the zonal winds) are compared and are shown to give very similar results for the breakup date. The variability in the timing of the breakup of both vortices is qualitatively the same: There are large interannual variations together with smaller decadal-scale variations and there is a significant increase in the persistence since the mid-1980s (all variations are larger for the Arctic vortex). Also, in both hemispheres, there is a high correlation between the persistence and the strength and coldness of the spring vortex, with all quantities having the same interannual and decadal variability. However, there is no such correlation between the persistence and the characteristics of the midwinter vortex. In the Northern Hemisphere, there is also a high correlation between the vortex persistence and the upper tropospheric/lower stratospheric eddy heat flux averaged over the 2 months prior to the breakup. This indicates that the variability in the wave activity entering the stratosphere over late winter to early spring plays a key role in the variability of the Arctic vortex persistence (and spring polar temperatures) on both interannual and decadal timescales. However, the extreme values of Arctic vortex coldness and persistence during the 1990s are not echoed as a similar extreme in the eddy heat flux. This suggests that the recent increase in vortex persistence is not solely due to changes in the wave activity entering the stratosphere.


Journal of Geophysical Research | 2010

Multimodel assessment of the upper troposphere and lower stratosphere: Tropics and global trends

Andrew Gettelman; M. I. Hegglin; Say-Jin Son; Jung-Hyun Kim; Masatomo Fujiwara; Thomas Birner; Stefanie Kremser; Markus Rex; Juan A. Añel; Hideharu Akiyoshi; John Austin; Slimane Bekki; P. Braesike; C. Brühl; Neal Butchart; M. P. Chipperfield; Martin Dameris; S. Dhomse; Hella Garny; Steven C. Hardiman; Patrick Jöckel; Douglas E. Kinnison; Jean-Francois Lamarque; E. Mancini; Marion Marchand; M. Michou; Olaf Morgenstern; Steven Pawson; G. Pitari; David A. Plummer

The performance of 18 coupled Chemistry Climate Models (CCMs) in the Tropical Tropopause Layer (TTL) is evaluated using qualitative and quantitative diagnostics. Trends in tropopause quantities in the tropics and the extratropical Upper Troposphere and Lower Stratosphere (UTLS) are analyzed. A quantitative grading methodology for evaluating CCMs is extended to include variability and used to develop four different grades for tropical tropopause temperature and pressure, water vapor and ozone. Four of the 18 models and the multi‐model mean meet quantitative and qualitative standards for reproducing key processes in the TTL. Several diagnostics are performed on a subset of the models analyzing the Tropopause Inversion Layer (TIL), Lagrangian cold point and TTL transit time. Historical decreases in tropical tropopause pressure and decreases in water vapor are simulated, lending confidence to future projections. The models simulate continued decreases in tropopause pressure in the 21st century, along with ∼1K increases per century in cold point tropopause temperature and 0.5–1 ppmv per century increases in water vapor above the tropical tropopause. TTL water vapor increases below the cold point. In two models, these trends are associated with 35% increases in TTL cloud fraction. These changes indicate significant perturbations to TTL processes, specifically to deep convective heating and humidity transport. Ozone in the extratropical lowermost stratosphere has significant and hemispheric asymmetric trends. O3 is projected to increase by nearly 30% due to ozone recovery in the Southern Hemisphere (SH) and due to enhancements in the stratospheric circulation. These UTLS ozone trends may have significant effects in the TTL and the troposphere.


Journal of Geophysical Research | 1999

The cold winters of the middle 1990s in the northern lower stratosphere

Steven Pawson; Barbara Naujokat

Lower stratospheric temperatures in the northern winters of 1994/1995, 1995/1996, and 1996/1997 were low enough to support polar stratospheric cloud (PSC) formation for prolonged periods. While the seasonal evolution of each winter was quite different, there are some common characteristics: notably, the occurrence of extremely cold periods of long duration and the coldness of the late winter in each year. Comparison with observations over more than three decades indicate the stratosphere was atypically cold in these three years, with the largest anomalies occurring in the late winter and spring. In January and February the coldness seems to be determined by the interannual variability of the circulation, while in March the persistence of the polar vortex dominated the circulation in these three years. This may be related to the lack of major midwinter warmings in those years. Comparison with other winters shows that although the persistence of the polar vortex well into the spring is not unprecedented, this did not occur frequently in the previous two decades. Further, there is a general temperature decrease in the northern lower stratosphere which contributed to the coldness of the three winters. Comparison of the late winter and spring of 1997 with 1967, both of which were forced only weakly by dynamics, supports the idea that this is due to a change in the radiative balance (with equilibrium at a lower temperature), although there are many caveats to this conclusion.


Journal of Climate | 2007

A New Look at Stratospheric Sudden Warmings. Part II: Evaluation of Numerical Model Simulations

Andrew J. Charlton; Lorenzo M. Polvani; Judith Perlwitz; F. Sassi; Elisa Manzini; Kiyotaka Shibata; Steven Pawson; J. Eric Nielsen; David Rind

The simulation of major midwinter stratospheric sudden warmings (SSWs) in six stratosphere-resolving general circulation models (GCMs) is examined. The GCMs are compared to a new climatology of SSWs, based on the dynamical characteristics of the events. First, the number, type, and temporal distribution of SSW events are evaluated. Most of the models show a lower frequency of SSW events than the climatology, which has a mean frequency of 6.0 SSWs per decade. Statistical tests show that three of the six models produce significantly fewer SSWs than the climatology, between 1.0 and 2.6 SSWs per decade. Second, four process-based diagnostics are calculated for all of the SSW events in each model. It is found that SSWs in the GCMs compare favorably with dynamical benchmarks for SSW established in the first part of the study. These results indicate that GCMs are capable of quite accurately simulating the dynamics required to produce SSWs, but with lower frequency than the climatology. Further dynamical diagnostics hint that, in at least one case, this is due to a lack of meridional heat flux in the lower stratosphere. Even though the SSWs simulated by most GCMs are dynamically realistic when compared to the NCEP-NCAR reanalysis, the reasons for the relative paucity of SSWs in GCMs remains an important and open question.

Collaboration


Dive into the Steven Pawson's collaboration.

Researchain Logo
Decentralizing Knowledge