Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven Q. Le is active.

Publication


Featured researches published by Steven Q. Le.


Journal of Clinical Investigation | 2008

Immune tolerance improves the efficacy of enzyme replacement therapy in canine mucopolysaccharidosis I

Patricia Dickson; Maryn Peinovich; Michael F. McEntee; Thomas Lester; Steven Q. Le; Aimee Krieger; Hayden Manuel; Catherine Jabagat; Merry Passage; Emil D. Kakkis

Mucopolysaccharidoses (MPSs) are lysosomal storage diseases caused by a deficit in the enzymes needed for glycosaminoglycan (GAG) degradation. Enzyme replacement therapy with recombinant human alpha-L-iduronidase successfully reduces lysosomal storage in canines and humans with iduronidase-deficient MPS I, but therapy usually also induces antibodies specific for the recombinant enzyme that could reduce its efficacy. To understand the potential impact of alpha-L-iduronidase-specific antibodies, we studied whether inducing antigen-specific immune tolerance to iduronidase could improve the effectiveness of recombinant iduronidase treatment in canines. A total of 24 canines with MPS I were either tolerized to iduronidase or left nontolerant. All canines received i.v. recombinant iduronidase at the FDA-approved human dose or a higher dose for 9-44 weeks. Nontolerized canines developed iduronidase-specific antibodies that proportionally reduced in vitro iduronidase uptake. Immune-tolerized canines achieved increased tissue enzyme levels at either dose in most nonreticular tissues and a greater reduction in tissue GAG levels, lysosomal pathology, and urinary GAG excretion. Tolerized MPS I dogs treated with the higher dose received some further benefit in the reduction of GAGs in tissues, urine, and the heart valve. Therefore, immune tolerance to iduronidase improved the efficacy of enzyme replacement therapy with recombinant iduronidase in canine MPS I and could potentially improve outcomes in patients with MPS I and other lysosomal storage diseases.


Science Translational Medicine | 2010

Replacing the Enzyme α-l-Iduronidase at Birth Ameliorates Symptoms in the Brain and Periphery of Dogs with Mucopolysaccharidosis Type I

Ashley Dierenfeld; Michael F. McEntee; Carole Vogler; Charles H. Vite; Agnes H. Chen; Merry Passage; Steven Q. Le; S. Shah; Jacqueline K. Jens; Elizabeth M. Snella; K.L. Kline; J.D. Parkes; Wendy A. Ware; L.E. Moran; A. J. Fales-Williams; J.A. Wengert; R.D. Whitley; D.M. Betts; A.M. Boal; E.A. Riedesel; William Gross; N.M. Ellinwood; Patricia Dickson

Replacing the enzyme α-l-iduronidase at birth ameliorates symptoms in the brain and periphery of dogs with mucopolysaccharidosis type I. When Dogs Really Are Man’s Best Friend For certain diseases, dogs provide an excellent large-animal model and the lysosomal storage disorder mucopolysaccharidosis type I is no exception. In this disease, a defect in the enzyme α-l-iduronidase prevents breakdown of glycosaminoglycans, resulting in their accumulation in the lysosomes of cells, leading to engorged and dysfunctional cells. A variety of serious complications ensue such as enlarged organs, skeletal defects, corneal clouding, abnormal heart valves, and cognitive deficits. Although a human recombinant form of the enzyme has proved successful in treating patients with less severe forms of the disease, only some of the symptoms are ameliorated and patients often develop antibodies to the enzyme. Dierenfeld and colleagues reasoned that starting enzyme replacement therapy at birth could halt or even reverse the more serious disease symptoms such as heart valve defects, skeletal deformities, and cognitive impairment and might prevent antibodies from forming against human recombinant α-l-iduronidase. Working in a naturally occurring dog model of mucopolysaccharidosis type I in which the animals have a defective α-l-iduronidase enzyme and show most of the symptoms of the human disease, Dierenfeld et al. administered two different doses of α-l-iduronidase (0.58 and 1.57 mg/kg) intravenously every week starting a few days after birth. The authors show that starting enzyme replacement therapy at such a young age prevented the formation of antibodies against the enzyme due to neonatal immune tolerance. Treated dogs showed marked reductions in glycosaminoglycans in a variety of different tissues including the mitral heart valve, which has been refractory to traditional enzyme treatment administered at later ages. Furthermore, treated dogs showed relatively normal skeletons and lacked the stiff gait, lax joints, upturned nose, and poor neck flexibility exhibited by untreated animals with the disease. Compellingly, glycosaminoglycan levels and cortical atrophy in the brain decreased and corneal clouding improved slightly (at the higher dose) in the treated dogs. These results show that starting intravenous administration of α-l-iduronidase at higher doses and as soon as possible after birth increases the efficacy of enzyme replacement therapy and ensures immune tolerance to the enzyme. These promising results in man’s best friend suggest that children with severe mucopolysaccharidosis type I or other early-onset lysosomal storage diseases should start enzyme replacement therapy as soon as possible after birth. Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disease caused by loss of activity of α-l-iduronidase and attendant accumulation of the glycosaminoglycans dermatan sulfate and heparan sulfate. Current treatments are suboptimal and do not address residual disease including corneal clouding, skeletal deformities, valvular heart disease, and cognitive impairment. We treated neonatal dogs with MPS I with intravenous recombinant α-l-iduronidase replacement therapy at the conventional 0.58 mg/kg or a higher 1.57 mg/kg weekly dose for 56 to 81 weeks. In contrast to previous results in animals and patients treated at a later age, the dogs failed to mount an antibody response to enzyme therapy, consistent with the induction of immune tolerance in neonates. The higher dose of enzyme led to complete normalization of lysosomal storage in the liver, spleen, lung, kidney, synovium, and myocardium, as well as in the hard-to-treat mitral valve. Cardiac biochemistry and function were restored, and there were improvements in skeletal disease as shown by clinical and radiographic assessments. Glycosaminoglycan levels in the brain were normalized after intravenous enzyme therapy, in the presence or absence of intrathecal administration of recombinant α-l-iduronidase. Histopathological evidence of glycosaminoglycan storage in the brain was ameliorated with the higher-dose intravenous therapy and was further improved by combining intravenous and intrathecal therapy. These findings argue that neonatal testing and early treatment of patients with MPS I may more effectively treat this disease.


Molecular Genetics and Metabolism | 2010

Early versus late treatment of spinal cord compression with long-term intrathecal enzyme replacement therapy in canine mucopolysaccharidosis type I

Patricia Dickson; Stephen Hanson; Michael F. McEntee; Charles H. Vite; Carole Vogler; Anton Mlikotic; Agnes H. Chen; Katherine P. Ponder; Mark E. Haskins; Brigette L. Tippin; Steven Q. Le; Merry Passage; Catalina Guerra; Ashley Dierenfeld; Jackie K. Jens; Elizabeth M. Snella; Shih-hsin Kan; N. Matthew Ellinwood

Enzyme replacement therapy (ERT) with intravenous recombinant human alpha-l-iduronidase (IV rhIDU) is a treatment for patients with mucopolysaccharidosis I (MPS I). Spinal cord compression develops in MPS I patients due in part to dural and leptomeningeal thickening from accumulated glycosaminoglycans (GAG). We tested long-term and every 3-month intrathecal (IT) and weekly IV rhIDU in MPS I dogs age 12-15months (Adult) and MPS I pups age 2-23days (Early) to determine whether spinal cord compression could be reversed, stabilized, or prevented. Five treatment groups of MPS I dogs were evaluated (n=4 per group): IT+IV Adult, IV Adult, IT + IV Early, 0.58mg/kg IV Early and 1.57mg/kg IV Early. IT + IV rhIDU (Adult and Early) led to very high iduronidase levels in cervical, thoracic, and lumber spinal meninges (3600-29,000% of normal), while IV rhIDU alone (Adult and Early) led to levels that were 8.2-176% of normal. GAG storage was significantly reduced from untreated levels in spinal meninges of IT + IV Early (p<.001), IT+IV Adult (p=.001), 0.58mg/kg IV Early (p=.002) and 1.57mg/kg IV Early (p<.001) treatment groups. Treatment of dogs shortly after birth with IT+IV rhIDU (IT + IV Early) led to normal to near-normal GAG levels in the meninges and histologic absence of storage vacuoles. Lysosomal storage was reduced in spinal anterior horn cells in 1.57mg/kg IV Early and IT + IV Early animals. All dogs in IT + IV Adult and IV Adult groups had compression of their spinal cord at 12-15months of age determined by magnetic resonance imaging and was due to protrusion of spinal disks into the canal. Cord compression developed in 3 of 4 dogs in the 0.58mg/kg IV Early group; 2 of 3 dogs in the IT + IV Early group; and 0 of 4 dogs in the 1.57mg/kg IV Early group by 12-18months of age. IT + IV rhIDU was more effective than IV rhIDU alone for treatment of meningeal storage, and it prevented meningeal GAG accumulation when begun early. High-dose IV rhIDU from birth (1.57mg/kg weekly) appeared to prevent cord compression due to protrusion of spinal disks.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Delivery of an enzyme-IGFII fusion protein to the mouse brain is therapeutic for mucopolysaccharidosis type IIIB

Shih-hsin Kan; Mika Aoyagi-Scharber; Steven Q. Le; Jon Vincelette; Kazuhiro Ohmi; Sherry Bullens; Daniel J. Wendt; Terri Christianson; Pascale M.N. Tiger; Jillian R. Brown; Roger Lawrence; Bryan K. Yip; John Holtzinger; Anil Bagri; Danielle Crippen-Harmon; Kristen N. Vondrak; Zhi Chen; Chuck Hague; Josh Woloszynek; Diana S. Cheung; Katherine A. Webster; Evan G. Adintori; Melanie J. Lo; Wesley P. Wong; Paul A. Fitzpatrick; Jonathan H. LeBowitz; Brett E. Crawford; Stuart Bunting; Patricia Dickson; Elizabeth F. Neufeld

Significance Mucopolysaccharidosis type IIIB (MPS IIIB) is a devastating and currently untreatable disease affecting mainly the brain. The cause is lack of the lysosomal enzyme, α–N-acetylglucosaminidase (NAGLU), and storage of heparan sulfate. Using a mouse model of MPS IIIB, we administered a modified NAGLU by injection into the left ventricle of the brain, bypassing the blood–brain barrier. The modification consisted of a fragment of IGFII, which allows receptor-mediated uptake and delivery to lysosomes. The modified enzyme was taken up avidly by cells in both brain and liver, where it reduced pathological accumulation of heparan sulfate and other metabolites to normal or near-normal levels. The results suggest the possibility of treatment for MPS IIIB. Mucopolysaccharidosis type IIIB (MPS IIIB, Sanfilippo syndrome type B) is a lysosomal storage disease characterized by profound intellectual disability, dementia, and a lifespan of about two decades. The cause is mutation in the gene encoding α–N-acetylglucosaminidase (NAGLU), deficiency of NAGLU, and accumulation of heparan sulfate. Impediments to enzyme replacement therapy are the absence of mannose 6-phosphate on recombinant human NAGLU and the blood–brain barrier. To overcome the first impediment, a fusion protein of recombinant NAGLU and a fragment of insulin-like growth factor II (IGFII) was prepared for endocytosis by the mannose 6-phosphate/IGFII receptor. To bypass the blood–brain barrier, the fusion protein (“enzyme”) in artificial cerebrospinal fluid (“vehicle”) was administered intracerebroventricularly to the brain of adult MPS IIIB mice, four times over 2 wk. The brains were analyzed 1–28 d later and compared with brains of MPS IIIB mice that received vehicle alone or control (heterozygous) mice that received vehicle. There was marked uptake of the administered enzyme in many parts of the brain, where it persisted with a half-life of approximately 10 d. Heparan sulfate, and especially disease-specific heparan sulfate, was reduced to control level. A number of secondary accumulations in neurons [β-hexosaminidase, LAMP1(lysosome-associated membrane protein 1), SCMAS (subunit c of mitochondrial ATP synthase), glypican 5, β-amyloid, P-tau] were reduced almost to control level. CD68, a microglial protein, was reduced halfway. A large amount of enzyme also appeared in liver cells, where it reduced heparan sulfate and β-hexosaminidase accumulation to control levels. These results suggest the feasibility of enzyme replacement therapy for MPS IIIB.


Annals of the New York Academy of Sciences | 2005

The Murine Cardiac 26S Proteasome: An Organelle Awaiting Exploration

Aldrin V. Gomes; Chenggong Zong; Ricky D. Edmondson; Beniam Berhane; Guang Wu Wang; Steven Q. Le; Glen W. Young; Jun Zhang; Thomas M. Vondriska; Julian P. Whitelegge; Richard C. Jones; Irving G. Joshua; Sheeno Thyparambil; Dawn Pantaleon; Joe Qiao; Joseph A. Loo; Peipei Ping

Abstract: Multiprotein complexes have been increasingly recognized as essential functional units for a variety of cellular processes, including the protein degradation system. Selective degradation of proteins in eukaryotes is primarily conducted by the ubiquitin proteasome system. The current knowledge base, pertaining to the proteasome complexes in mammalian cells, relies largely upon information gained in the yeast system, where the 26S proteasome is hypothesized to contain a 20S multiprotein core complex and one or two 19S regulatory complexes. To date, the molecular structure of the proteasome system, the proteomic composition of the entire 26S multiprotein complexes, and the specific designated function of individual components within this essential protein degradation system in the heart remain virtually unknown. A functional proteomic approach, employing multidimensional chromatography purification combined with liquid chromatography tandem mass spectrometry and protein chemistry, was utilized to explore the murine cardiac 26S proteasome system. This article presents an overview on the subject of protein degradation in mammalian cells. In addition, this review shares the limited information that has been garnered thus far pertaining to the molecular composition, function, and regulation of this important organelle in the cardiac cells.


Molecular Genetics and Metabolism | 2012

Specific antibody titer alters the effectiveness of intrathecal enzyme replacement therapy in canine mucopolysaccharidosis I.

Patricia Dickson; N. Matthew Ellinwood; Jillian R. Brown; Robert G. Witt; Steven Q. Le; Merry Passage; Moin U. Vera; Brett E. Crawford

Intrathecal enzyme replacement therapy is an experimental option to treat central nervous system disease due to lysosomal storage. Previous work shows that MPS I dogs receiving enzyme replacement with recombinant human alpha-l-iduronidase into the cisterna magna showed normal brain glycosaminoglycan (GAG) storage after three or four doses. We analyzed MPS I dogs that received intrathecal enzyme in a previous study using an assay that detects only pathologic GAG (pGAG). To quantify pGAG in MPS I, the assay measures only those GAG which display terminal iduronic acid residues on their non-reducing ends. Mean cortical brain pGAG in six untreated MPS I dogs was 60.9±5.93 pmol/mg wet weight, and was 3.83±2.64 in eight normal or unaffected carrier animals (p<0.001). Intrathecal enzyme replacement significantly reduced pGAG storage in all treated animals. Dogs with low anti-iduronidase antibody titers showed normalization or near-normalization of pGAG in the brain (mean 8.17±6.17, n=7), while in dogs with higher titers, pGAG was reduced but not normal (mean 21.9±6.02, n=4). Intrathecal enzyme therapy also led to a mean 69% reduction in cerebrospinal fluid pGAG (from 83.8±26.3 to 27.2±12.3 pmol/ml CSF). The effect was measurable one month after each dose and did not differ with antibody titer. Prevention of the immune response to enzyme may improve the efficacy of intrathecal enzyme replacement therapy for brain disease due to MPS I.


Pediatric Research | 2013

Immune response to intrathecal enzyme replacement therapy in mucopolysaccharidosis I patients

Moin U. Vera; Steven Q. Le; Shih-hsin Kan; Hermes Garban; David E. Naylor; Anton Mlikotic; Ilkka Kaitila; Paul Harmatz; Agnes H. Chen; Patricia Dickson

Background:Intrathecal (IT) enzyme replacement therapy with recombinant human α-L-iduronidase (rhIDU) has been studied to treat glycosaminoglycan storage in the central nervous system of mucopolysaccharidosis (MPS) I dogs and is currently being studied in MPS I patients.Methods:We studied the immune response to IT rhIDU in MPS I subjects with spinal cord compression who had been previously treated with intravenous rhIDU. We measured the concentrations of specific antibodies and cytokines in serum and cerebrospinal fluid (CSF) collected before monthly IT rhIDU infusions and compared the serologic findings with clinical adverse event (AE) reports to establish temporal correlations with clinical symptoms.Results:Five MPS I subjects participating in IT rhIDU trials were studied. One subject with symptomatic spinal cord compression had evidence of an inflammatory response with CSF leukocytosis, elevated interleukin-5, and elevated immunoglobulin G. This subject also complained of lower back pain and buttock paresthesias temporally correlated with serologic abnormalities. Clinical symptoms were managed with oral medication, and serologic abnormalities were resolved, although this subject withdrew from the trial to have spinal decompressive surgery.Conclusion:IT rhIDU was generally well tolerated in the subjects studied, although one subject had moderate to severe clinical symptoms and serologic abnormalities consistent with an immune response.


Biochemical Journal | 2014

Insulin-like growth factor II peptide fusion enables uptake and lysosomal delivery of α-N-acetylglucosaminidase to mucopolysaccharidosis type IIIB fibroblasts

Shih hsin Kan; Larisa Troitskaya; Carolyn S. Sinow; Karyn Haitz; Amanda K. Todd; Ariana Di Stefano; Steven Q. Le; Patricia Dickson; Brigette L. Tippin

Enzyme replacement therapy for MPS IIIB (mucopolysaccharidosis type IIIB; also known as Sanfilippo B syndrome) has been hindered by inadequate mannose 6 phosphorylation and cellular uptake of rhNAGLU (recombinant human α-N-acetylglucosaminidase). We expressed and characterized a modified rhNAGLU fused to the receptor-binding motif of IGF-II (insulin-like growth factor 2) (rhNAGLU-IGF-II) to enhance its ability to enter cells using the cation-independent mannose 6-phosphate receptor, which is also the receptor for IGF-II (at a different binding site). RhNAGLU-IGF-II was stably expressed in CHO (Chinese-hamster ovary) cells, secreted and purified to apparent homogeneity. The Km and pH optimum of the fusion enzyme was similar to those reported for rhNAGLU. Both intracellular uptake and confocal microscopy suggested that MPS IIIB fibroblasts readily take up the fusion enzyme via receptor-mediated endocytosis that was inhibited significantly (P<0.001) by the monomeric IGF-II peptide. Glycosaminoglycan storage was reduced by 60% (P<0.001) to near background levels in MPS IIIB cells after treatment with rhNAGLU-IGF-II, with half-maximal correction at concentrations of 3-12 pM. A similar cellular uptake mechanism via the IGF-II receptor was also demonstrated in two different brain tumour-derived cell lines. Fusion of rhNAGLU to IGF-II enhanced its cellular uptake while maintaining enzymatic activity, supporting its potential as a therapeutic candidate for treating MPS IIIB.


Apmis | 2011

Glycosaminoglycan storage in neuroanatomical regions of mucopolysaccharidosis I dogs following intrathecal recombinant human iduronidase

Agnes H. Chen; Carole Vogler; Michael F. McEntee; Stephen Hanson; N. Matthew Ellinwood; Jackie K. Jens; Elizabeth M. Snella; Merry Passage; Steven Q. Le; Catalina Guerra; Patricia Dickson

Chen A, Vogler C, McEntee M, Hanson S, Ellinwood MN, Jens J, Snella E, Passage M, Le S, Guerra C, Dickson P. Glycosaminoglycan storage in neuroanatomical regions of mucopolysaccharidosis I dogs following intrathecal recombinant human iduronidase. APMIS 2011; 119: 513–21.


Molecular Genetics and Metabolism | 2015

Safety of laronidase delivered into the spinal canal for treatment of cervical stenosis in mucopolysaccharidosis I

Patricia Dickson; Ilkka Kaitila; Paul Harmatz; Anton Mlikotic; Agnes H. Chen; Alla Victoroff; Merry Passage; Jacqueline Madden; Steven Q. Le; David E. Naylor

Enzyme replacement therapy with laronidase (recombinant human alpha-l-iduronidase) is successfully used to treat patients with mucopolysaccharidosis type I (MPS I). However, the intravenously-administered enzyme is not expected to treat or prevent neurological deterioration. As MPS I patients suffer from spinal cord compression due in part to thickened spinal meninges, we undertook a phase I clinical trial of lumbar intrathecal laronidase in MPS I subjects age 8 years and older with symptomatic (primarily cervical) spinal cord compression. The study faced significant challenges, including a heterogeneous patient population, difficulty recruiting subjects despite an international collaborative effort, and an inability to include a placebo-controlled design due to ethical concerns. Nine serious adverse events occurred in the subjects. All subjects reported improvement in symptomatology and showed improved neurological examinations, but objective outcome measures did not demonstrate change. Despite limitations, we demonstrated the safety of this approach to treating neurological disease due to MPS I.

Collaboration


Dive into the Steven Q. Le's collaboration.

Top Co-Authors

Avatar

Patricia Dickson

Los Angeles Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Shih-hsin Kan

University of California

View shared research outputs
Top Co-Authors

Avatar

Merry Passage

University of California

View shared research outputs
Top Co-Authors

Avatar

Agnes H. Chen

Los Angeles Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Moin U. Vera

Los Angeles Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles H. Vite

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge