Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven R. Baum is active.

Publication


Featured researches published by Steven R. Baum.


Archive | 2002

Characterization of Vadose Zone Sediment: Borehole 299-E33-45 Near BX-102 in the B-BX-BY Waste Management Area

R. Jeffrey Serne; Glendon W. Gee; Herbert T. Schaef; David C. Lanigan; Clark W. Lindenmeier; Michael J. Lindberg; Ray E. Clayton; Virginia L. Legore; Robert D. Orr; Igor V. Kutnyakov; Steven R. Baum; Keith N. Geiszler; Christopher F. Brown; Michelle M. Valenta

This report was revised in September 2008 to remove acid-extractable sodium data from Table 4.22. The data was removed due to potential contamination introduced during the acid extraction process. The remaining text is unchanged from the original report issued in 2002. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area B-BX-BY. This report is the first in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from borehole 299-E33-45 installed northeast of tank BX-102.


Archive | 2007

Interim Report: Uranium Stabilization Through Polyphosphate Injection - 300 Area Uranium Plume Treatability Demonstration Project

Dawn M. Wellman; Eric M. Pierce; Emily L. Richards; Bart C. Butler; Kent E. Parker; Julia N. Glovack; Sarah D. Burton; Steven R. Baum; Eric T. Clayton; Elsa A. Rodriguez

This report presents results from bench-scale treatability studies conducted under site-specific conditions to optimize the polyphosphate amendment for implementation of a field-scale technology demonstration to treat aqueous uranium within the 300 Area aquifer of the Hanford site. The general treatability testing approach consists of conducting studies with site sediment and under site conditions, in order to develop an effective chemical formulation for the polyphosphate amendments and evaluate the transport properties of these amendments under site conditions. Phosphorus-31 (31P) NMR was utilized to determine the effects of Hanford groundwater and sediment on the degradation of inorganic phosphates. Static batch tests were conducted to optimize the composition of the polyphosphate formulation for the precipitation of apatite and autunite, as well as to quantify the kinetics, loading and stability of apatite as a long-term sorbent for uranium. Dynamic column tests were used to further optimize the polyphosphate formulation for emplacement within the subsurface and the formation of autunite and apatite. In addition, dynamic testing quantified the stability of autunite and apatite under relevant site conditions. Results of this investigation provide valuable information for designing a full-scale remediation of uranium in the 300 aquifer.


Archive | 2003

Characterization of Vadose Zone Sediment: RCRA Borehole 299-E33-338 Located Near the B-BX-BY Waste Management Area

Clark W. Lindenmeier; R. Jeffrey Serne; Bruce N. Bjornstad; Glendon W. Gee; Herbert T. Schaef; David C. Lanigan; Michael J. Lindberg; Ray E. Clayton; Virginia L. Legore; Igor V. Kutnyakov; Steven R. Baum; Keith N. Geiszler; Christopher F. Brown; Michelle M. Valenta; Lisa J. Royack

This report was revised in September 2008 to remove acid-extractable sodium data from Table 4.8. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in June 2003. The overall goals of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., are: 1) to define risks from past and future single-shell tank farm activities, 2) to identify and evaluate the efficacy of interim measures, and 3) to aid via collection of geotechnical information and data, future decisions that must be made by the U.S. Department of Energy (DOE) regarding the near-term operations, future waste retrieval, and final closure activities for the single-shell tank waste management areas. For a more complete discussion of the goals of the Tank Farm Vadose Zone Project, see the overall work plan, Phase 1 RCRA Facility Investigation/Corrective Measures Study Work Plan for the Single-Shell Tank Waste Management Areas (DOE 1999). Specific details on the rationale for activities performed at the B-BX-BY tank farm waste management area are found in CH2M HILL (2000).


Archive | 2008

Characterization of Vadose Zone Sediments Below the TX Tank Farm: Boreholes C3830, C3831, C3832 and RCRA Borehole 299-W10-27

R. Jeffrey Serne; Bruce N. Bjornstad; Duane G. Horton; David C. Lanigan; Clark W. Lindenmeier; Michael J. Lindberg; Ray E. Clayton; Virginia L. Legore; Robert D. Orr; Igor V. Kutnyakov; Steven R. Baum; Keith N. Geiszler; Michelle M. Valenta

This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.8, 4.28,4.43, and 4.59. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in April 2004. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) T-TX-TY. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from boreholes C3830, C3831, and C3832 in the TX Tank Farm, and from borehole 299-W-10-27 installed northeast of the TY Tank Farm.


Archive | 2008

300 Area Treatability Test: Laboratory Development of Polyphosphate Remediation Technology for In Situ Treatment of Uranium Contamination in the Vadose Zone and Capillary Fringe

Dawn M. Wellman; Eric M. Pierce; Diana H. Bacon; Martinus Oostrom; Katie M. Gunderson; Samuel M. Webb; Chase C. Bovaird; Elsa A. Cordova; Eric T. Clayton; Kent E. Parker; Ruby M. Ermi; Steven R. Baum; Vincent R. Vermeul; Jonathan S. Fruchter

A laboratory testing program has been conducted to optimize polyphosphate remediation technology for implementation through a field-scale technology infiltration demonstration to stabilize soluble, uranium-bearing source phases in the vadose zone and capillary fringe. Source treatment in the deep vadose zone will accelerate the natural attenuation of uranium to more thermodynamically stable uranium-phosphate minerals, enhancing the performance of the proposed polyphosphate remediation within the 300 Area aquifer. The objective of this investigation was to develop polyphosphate remediation technology to treat uranium contamination contained within the deep vadose zone and capillary fringe. This chapter presents the results of an investigation that evaluated the rate and extent of reaction between polyphosphate and the uranium mineral phases present within the 300 Area, and autunite formation as a function of polyphosphate formulation and concentration. This information is critical for identifying the optimum implementation approach and controlling the flux of uranium to the underlying aquifer during remediation. Results from this investigation may be used to design a full-scale remediation of uranium at the 300 Area of the Hanford Site.


Archive | 2006

Characterization of Vadose Zone Sediments Below the C Tank Farm: Borehole C4297 and RCRA Borehole 299-E27-22

Christopher F. Brown; R. Jeffrey Serne; Bruce N. Bjornstad; Duane G. Horton; David C. Lanigan; Ray E. Clayton; Michelle M. Valenta; Igor V. Kutnyakov; Keith N. Geiszler; Steven R. Baum; Kent E. Parker; Michael J. Lindberg

The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) C. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from borehole C4297, installed adjacent to Tank C-105, and from borehole 299-E27-22, installed directly north of the C Tank Farm. Sediments from borehole 299-E27-22 were considered to be background uncontaminated sediments against which to compare contaminated sediments for the C Tank Farm characterization effort. This report also presents our interpretation of the data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the C Tank Farm. The information presented in this report supports the A-AX, C and U Waste Management Area field investigation report(a) in preparation by CH2M HILL Hanford Group, Inc. A core log was generated for both boreholes and a geologic evaluation of all core samples was performed at the time of opening. Aliquots of sediment from the borehole core samples were analyzed and characterized in the laboratory for the following parameters: moisture content, gamma-emitting radionuclides, one-to-one water extracts (which provide soil pH, electrical conductivity, cation, trace metal, and anion data), total carbon and inorganic carbon content, and 8 M nitric acid extracts (which provide a measure of the total leachable sediment content of contaminants). Two key radiocontaminants, technetium-99 and uranium-238, along with other trace metals were determined in acid and water extracts by inductively coupled plasma mass spectrometry.


Archive | 2008

Characterization of Vadose Zone Sediment: Borehole 299-E33-46 Near B 110 in the B BX-BY Waste Management Area

R. Jeffrey Serne; Bruce N. Bjornstad; Glendon W. Gee; Herbert T. Schaef; David C. Lanigan; r. G. mccain; Clark W. Lindenmeier; Robert D. Orr; Virginia L. Legore; Ray E. Clayton; Michael J. Lindberg; I. V. Kutynakov; Steven R. Baum; Keith N. Geiszler; Michelle M. Valenta; Lisa J. Royack

This report was revised in September 2008 to remove acid-ectractable sodium data from Table 4.17. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in December 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the B-BX-BY Waste Management Area. This report is the third in a series of three reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from a borehole installed approximately 4.5 m (15 ft) northeast of tank B- 110 (borehole 299-E33-46).


Archive | 2009

Characterization of Sediments from the Soil Desiccation Pilot Test (SDPT) Site in the BC Cribs and Trenches Area

Wooyong Um; Michael J. Truex; Michelle M. Valenta; Cristian Iovin; Igor V. Kutnyakov; Hyun-Shik Chang; Ray E. Clayton; R. Jeffrey Serne; Anderson L. Ward; Christopher F. Brown; Keith N. Geiszler; Eric T. Clayton; Steven R. Baum; David M. Smith

This technical report documents the results of laboratory geochemical and hydrologic measurements of sediments collected from new borehole 299-E13-65 (C7047) and comparison of the results with those of nearby borehole 299-13E-62 (C5923) both drilled in the BC Cribs and Trenches Area. The total and water-leachable concentrations of key contaminants will be used to update contaminant-distribution conceptual models and to provide more data for improving baseline risk predictions and remedial alternative selections. Improved understanding of subsurface conditions and methods to remediate these principal contaminants can be also used to evaluate the application of specific technologies to other contaminants across the Hanford Site.


Archive | 2007

Characterization of Vadose Zone Sediments from C Waste Management Area: Investigation of the C-152 Transfer Line Leak

Christopher F. Brown; R. Jeffrey Serne; Bruce N. Bjornstad; Michelle M. Valenta; David C. Lanigan; Ray E. Clayton; Keith N. Geiszler; Cristian Iovin; Eric T. Clayton; I. V. Kutynakov; Steven R. Baum; Michael J. Lindberg; Robert D. Orr

The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in January 2007. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc., tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within waste management area (WMA) C. Specifically, this report contains all the geologic, geochemical, and selected physiochemical characterization data compiled on vadose zone sediment recovered from direct-push samples collected around the site of an unplanned release (UPR), UPR-200-E-82, adjacent to the 241-C-152 Diversion Box located in WMA C.


Archive | 2002

Characterization of Vadose Zone Sediment: Borehole C3103 Located in the 216-B-7A Crib Near the B Tank Farm

Clark W. Lindenmeier; R. Jeffrey Serne; Bruce N. Bjornstad; David C. Lanigan; Michael J. Lindberg; Ray E. Clayton; Virginia L. Legore; Igor V. Kutnyakov; Steven R. Baum; Keith N. Geiszler; Michelle M. Valenta

This report summarizes data collected from samples in borehole C3103. Borehole C3103 was completed to further characterize the nature and extent of vadose zone contaminants supplied by intentional liquid discharges into the crib 216-B7A/7B between 1954 and 1967. These cribs received dilute waste streams from the bismuth phosphate fuel reprocessing program in the 1950s and decontamination waste in the 1960s. Elevated concentrations of several constituents were primarily measured at different depth intervals. The primary radionuclides present in this borehole are cesium-137 and uranium near the top of the borehole. Chemical characteristics attributed to wastewater-soil interaction at different locations within this zone are elevated pH, sodium, fluoride, carbonate nitrate, and sulphate

Collaboration


Dive into the Steven R. Baum's collaboration.

Top Co-Authors

Avatar

Keith N. Geiszler

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Michelle M. Valenta

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

R. Jeffrey Serne

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ray E. Clayton

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Igor V. Kutnyakov

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Michael J. Lindberg

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Bruce N. Bjornstad

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Christopher F. Brown

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Virginia L. Legore

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Herbert T. Schaef

Pacific Northwest National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge