Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven R. DePalma is active.

Publication


Featured researches published by Steven R. DePalma.


The New England Journal of Medicine | 2012

Truncations of Titin Causing Dilated Cardiomyopathy

Daniel S. Herman; Lien Lam; Libin Wang; Polakit Teekakirikul; Danos C. Christodoulou; Lauren Conner; Steven R. DePalma; Barbara McDonough; Elizabeth Sparks; Debbie Lin Teodorescu; Allison L. Cirino; Nicholas R. Banner; Dudley J. Pennell; Sharon Graw; Marco Merlo; Gianfranco Sinagra; J. Martijn Bos; Michael J. Ackerman; Richard N. Mitchell; Charles E. Murry; Neal K. Lakdawala; Carolyn Y. Ho; Stuart A. Cook; Luisa Mestroni; Christine E. Seidman

BACKGROUND Dilated cardiomyopathy and hypertrophic cardiomyopathy arise from mutations in many genes. TTN, the gene encoding the sarcomere protein titin, has been insufficiently analyzed for cardiomyopathy mutations because of its enormous size. METHODS We analyzed TTN in 312 subjects with dilated cardiomyopathy, 231 subjects with hypertrophic cardiomyopathy, and 249 controls by using next-generation or dideoxy sequencing. We evaluated deleterious variants for cosegregation in families and assessed clinical characteristics. RESULTS We identified 72 unique mutations (25 nonsense, 23 frameshift, 23 splicing, and 1 large tandem insertion) that altered full-length titin. Among subjects studied by means of next-generation sequencing, the frequency of TTN mutations was significantly higher among subjects with dilated cardiomyopathy (54 of 203 [27%]) than among subjects with hypertrophic cardiomyopathy (3 of 231 [1%], P=3×10(-16)) or controls (7 of 249 [3%], P=9×10(-14)). TTN mutations cosegregated with dilated cardiomyopathy in families (combined lod score, 11.1) with high (>95%) observed penetrance after the age of 40 years. Mutations associated with dilated cardiomyopathy were overrepresented in the titin A-band but were absent from the Z-disk and M-band regions of titin (P≤0.01 for all comparisons). Overall, the rates of cardiac outcomes were similar in subjects with and those without TTN mutations, but adverse events occurred earlier in male mutation carriers than in female carriers (P=4×10(-5)). CONCLUSIONS TTN truncating mutations are a common cause of dilated cardiomyopathy, occurring in approximately 25% of familial cases of idiopathic dilated cardiomyopathy and in 18% of sporadic cases. Incorporation of sequencing approaches that detect TTN truncations into genetic testing for dilated cardiomyopathy should substantially increase test sensitivity, thereby allowing earlier diagnosis and therapeutic intervention for many patients with dilated cardiomyopathy. Defining the functional effects of TTN truncating mutations should improve our understanding of the pathophysiology of dilated cardiomyopathy. (Funded by the Howard Hughes Medical Institute and others.).


Nature Genetics | 2009

De novo copy number variants identify new genes and loci in isolated sporadic tetralogy of Fallot

Steven C Greenway; Alexandre C. Pereira; Jennifer C Lin; Steven R. DePalma; Samuel J Israel; Sonia M. F. Mesquita; Emel A. Ergul; Jessie H. Conta; Joshua M. Korn; Steven A. McCarroll; Joshua M. Gorham; Stacey B. Gabriel; David Altshuler; Maria de Lourdes Quintanilla-Dieck; Maria A. Artunduaga; Roland D. Eavey; Robert M. Plenge; Nancy A. Shadick; Michael E. Weinblatt; Philip L. De Jager; David A. Hafler; Roger E. Breitbart; Jonathan G. Seidman; Christine E. Seidman

Tetralogy of Fallot (TOF), the most common severe congenital heart malformation, occurs sporadically, without other anomaly, and from unknown cause in 70% of cases. Through a genome-wide survey of 114 subjects with TOF and their unaffected parents, we identified 11 de novo copy number variants (CNVs) that were absent or extremely rare (<0.1%) in 2,265 controls. We then examined a second, independent TOF cohort (n = 398) for additional CNVs at these loci. We identified CNVs at chromosome 1q21.1 in 1% (5/512, P = 0.0002, OR = 22.3) of nonsyndromic sporadic TOF cases. We also identified recurrent CNVs at 3p25.1, 7p21.3 and 22q11.2. CNVs in a single subject with TOF occurred at six loci, two that encode known (NOTCH1, JAG1) disease-associated genes. Our findings predict that at least 10% (4.5–15.5%, 95% confidence interval) of sporadic nonsyndromic TOF cases result from de novo CNVs and suggest that mutations within these loci might be etiologic in other cases of TOF.


American Journal of Human Genetics | 2001

A Nonsense Mutation in MSX1 Causes Witkop Syndrome

Dolrudee Jumlongras; Marianna Bei; Jean M. Stimson; WenFang Wang; Steven R. DePalma; Christine E. Seidman; Ute Felbor; Richard L. Maas; Jonathan G. Seidman; Björn Olsen

Witkop syndrome, also known as tooth and nail syndrome (TNS), is a rare autosomal dominant disorder. Affected individuals have nail dysplasia and several congenitally missing teeth. To identify the gene responsible for TNS, we used candidate-gene linkage analysis in a three-generation family affected by the disorder. We found linkage between TNS and polymorphic markers surrounding the MSX1 locus. Direct sequencing and restriction-enzyme analysis revealed that a heterozygous stop mutation in the homeodomain of MSX1 cosegregated with the phenotype. In addition, histological analysis of Msx1-knockout mice, combined with a finding of Msx1 expression in mesenchyme of developing nail beds, revealed that not only was tooth development disrupted in these mice, but nail development was affected as well. Nail plates in Msx1-null mice were defective and were thinner than those of their wild-type littermates. The resemblance between the tooth and nail phenotype in the human family and that of Msx1-knockout mice strongly supports the conclusions that a nonsense mutation in MSX1 causes TNS and that Msx1 is critical for both tooth and nail development.


Science | 2015

De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies

Jason Homsy; Samir Zaidi; Yufeng Shen; James S. Ware; Kaitlin E. Samocha; Konrad J. Karczewski; Steven R. DePalma; David M. McKean; Hiroko Wakimoto; Josh Gorham; Sheng Chih Jin; John Deanfield; Alessandro Giardini; George A. Porter; Richard Kim; Kaya Bilguvar; Francesc López-Giráldez; Irina Tikhonova; Shrikant Mane; Angela Romano-Adesman; Hongjian Qi; Badri N. Vardarajan; Lijiang Ma; Mark J. Daly; Amy E. Roberts; Mark W. Russell; Seema Mital; Jane W. Newburger; J. William Gaynor; Roger E. Breitbart

Putting both heart and brain at risk For reasons that are unclear, newborns with congenital heart disease (CHD) have a high risk of neurodevelopmental disabilities. Homsy et al. performed exome sequence analysis of 1200 CHD patients and their parents to identify spontaneously arising (de novo) mutations. Patients with both CHD and neurodevelopmental disorders had a much higher burden of damaging de novo mutations, particularly in genes with likely roles in both heart and brain development. Thus, clinical genotyping of patients with CHD may help to identify those at greatest risk of neurodevelopmental disabilities, allowing surveillance and early intervention. Science, this issue p. 1262 Genotyping of children with congenital heart disease may identify those at high risk of neurodevelopmental disorders. Congenital heart disease (CHD) patients have an increased prevalence of extracardiac congenital anomalies (CAs) and risk of neurodevelopmental disabilities (NDDs). Exome sequencing of 1213 CHD parent-offspring trios identified an excess of protein-damaging de novo mutations, especially in genes highly expressed in the developing heart and brain. These mutations accounted for 20% of patients with CHD, NDD, and CA but only 2% of patients with isolated CHD. Mutations altered genes involved in morphogenesis, chromatin modification, and transcriptional regulation, including multiple mutations in RBFOX2, a regulator of mRNA splicing. Genes mutated in other cohorts examined for NDD were enriched in CHD cases, particularly those with coexisting NDD. These findings reveal shared genetic contributions to CHD, NDD, and CA and provide opportunities for improved prognostic assessment and early therapeutic intervention in CHD patients.


Genetics in Medicine | 2015

Results of clinical genetic testing of 2,912 probands with hypertrophic cardiomyopathy: expanded panels offer limited additional sensitivity

Ahmed A. Alfares; Melissa A. Kelly; Gregory McDermott; Birgit Funke; Matthew S. Lebo; Samantha Baxter; Jun Shen; Heather M. McLaughlin; Eugene H. Clark; Larry Babb; Stephanie Cox; Steven R. DePalma; Carolyn Y. Ho; Jonathan G. Seidman; Christine E. Seidman; Heidi L. Rehm

Purpose:Hypertrophic cardiomyopathy (HCM) is caused primarily by pathogenic variants in genes encoding sarcomere proteins. We report genetic testing results for HCM in 2,912 unrelated individuals with nonsyndromic presentations from a broad referral population over 10 years.Methods:Genetic testing was performed by Sanger sequencing for 10 genes from 2004 to 2007, by HCM CardioChip for 11 genes from 2007 to 2011 and by next-generation sequencing for 18, 46, or 51 genes from 2011 onward.Results:The detection rate is ~32% among unselected probands, with inconclusive results in an additional 15%. Detection rates were not significantly different between adult and pediatric probands but were higher in females compared with males. An expanded gene panel encompassing more than 50 genes identified only a very small number of additional pathogenic variants beyond those identifiable in our original panels, which examined 11 genes. Familial genetic testing in at-risk family members eliminated the need for longitudinal cardiac evaluations in 691 individuals. Based on the projected costs derived from Medicare fee schedules for the recommended clinical evaluations of HCM family members by the American College of Cardiology Foundation/American Heart Association, our data indicate that genetic testing resulted in a minimum cost savings of about


Proceedings of the National Academy of Sciences of the United States of America | 2012

Spectrum of somatic mitochondrial mutations in five cancers

Tatianna C. Larman; Steven R. DePalma; Angela Hadjipanayis; Alexei Protopopov; Jianhua Zhang; Stacey Gabriel; Lynda Chin; Christine E. Seidman; Raju Kucherlapati; Jonathan G. Seidman

0.7 million.Conclusion:Clinical HCM genetic testing provides a definitive molecular diagnosis for many patients and provides cost savings to families. Expanded gene panels have not substantively increased the clinical sensitivity of HCM testing, suggesting major additional causes of HCM still remain to be identified.Genet Med 17 11, 880–888.


Journal of Clinical Investigation | 2005

A novel COL1A1 mutation in infantile cortical hyperostosis (Caffey disease) expands the spectrum of collagen-related disorders

Robert C. Gensure; Outi Mäkitie; Catherine Barclay; Catherine Chan; Steven R. DePalma; Murat Bastepe; Hilal Abu-Zahra; Richard Couper; Stefan Mundlos; David Sillence; Leena Ala Kokko; Jonathan G. Seidman; William G. Cole; Harald Jüppner

Somatic mtDNA mutations have been reported in some human tumors, but their spectrum in different malignancies and their role in cancer development remain incompletely understood. Here, we describe the breadth of somatic and inherited mutations across the mitochondrial genome by sequence analyses of paired tumor and normal tissue samples from 226 individuals with five types of cancer using whole-genome data generated by The Cancer Genome Atlas Research Network. The frequencies of deleterious tumor-specific somatic mutations found in mtDNA varied across tumor types, ranging from 13% of glioblastomas to 63% of rectal adenocarcinomas. Compared with inherited mtDNA variants, somatic mtDNA mutations were enriched for nonsynonymous vs. synonymous changes (93 vs. 15; P < 2.2E−16) and were predicted to functionally impact the encoded protein. Somatic missense mutations in tumors were distributed uniformly among the mitochondrial protein genes, but 65% of somatic truncating mutations occurred in NADH dehydrogenase 5. Analysis of staging data in colon and rectal cancers revealed that the frequency of damaging mitochondrial mutations is the same in stages I and IV tumors. In summary, these data suggest that damaging somatic mtDNA mutations occur frequently (13–63%) in these five tumor types and likely confer a selective advantage in oncogenesis.


Circulation Research | 2014

Increased Burden of Cardiovascular Disease in Carriers of APOL1 Genetic Variants

Kaoru Ito; Alexander G. Bick; Jason Flannick; David J. Friedman; Giulio Genovese; Michael Parfenov; Steven R. DePalma; Namrata Gupta; Stacey B. Gabriel; Herman A. Taylor; Ervin R. Fox; Christopher Newton-Cheh; Sekar Kathiresan; Joel N. Hirschhorn; David Altshuler; Martin R. Pollak; James G. Wilson; Jonathan G. Seidman; Christine E. Seidman

Infantile cortical hyperostosis (Caffey disease) is characterized by spontaneous episodes of subperiosteal new bone formation along 1 or more bones commencing within the first 5 months of life. A genome-wide screen for genetic linkage in a large family with an autosomal dominant form of Caffey disease (ADC) revealed a locus on chromosome 17q21 (LOD score, 6.78). Affected individuals and obligate carriers were heterozygous for a missense mutation (3040Ctwo head right arrowT) in exon 41 of the gene encoding the alpha1(I) chain of type I collagen (COL1A1), altering residue 836 (R836C) in the triple-helical domain of this chain. The same mutation was identified in affected members of 2 unrelated, smaller families with ADC, but not in 2 prenatal cases and not in more than 300 chromosomes from healthy individuals. Fibroblast cultures from an affected individual produced abnormal disulfide-bonded dimeric alpha1(I) chains. Dermal collagen fibrils of the same individual were larger, more variable in shape and size, and less densely packed than those in control samples. Individuals bearing the mutation, whether they had experienced an episode of cortical hyperostosis or not, had joint hyperlaxity, hyperextensible skin, and inguinal hernias resembling symptoms of a mild form of Ehlers-Danlos syndrome type III. These findings extend the spectrum of COL1A1-related diseases to include a hyperostotic disorder.


Circulation Research | 2014

Increased Frequency of De Novo Copy Number Variants in Congenital Heart Disease by Integrative Analysis of Single Nucleotide Polymorphism Array and Exome Sequence Data

Joseph T. Glessner; Alexander G. Bick; Kaoru Ito; Jason Homsy; Laura Rodriguez-Murillo; Menachem Fromer; Erica Mazaika; Badri N. Vardarajan; Jeremy Leipzig; Steven R. DePalma; Ryan Golhar; Stephan J. Sanders; Boris Yamrom; Michael Ronemus; Ivan Iossifov; A. Jeremy Willsey; Matthew W. State; Jonathan R. Kaltman; Peter S. White; Yufeng Shen; Dorothy Warburton; Martina Brueckner; Christine E. Seidman; Elizabeth Goldmuntz; Bruce D. Gelb; Richard P. Lifton; Jonathan G. Seidman; Hakon Hakonarson; Wendy K. Chung

Rationale: Two distinct alleles in the gene encoding apolipoprotein L1 (APOL1), a major component of high-density lipoprotein, confer protection against Trypanosoma brucei rhodesiense infection and also increase risk for chronic kidney disease. Approximately 14% of Americans with African ancestry carry 2 APOL1 risk alleles, accounting for the high chronic kidney disease burden in this population. Objective: We tested whether APOL1 risk alleles significantly increase risk for atherosclerotic cardiovascular disease (CVD) in African Americans. Methods and Results: We sequenced APOL1 in 1959 randomly selected African American participants in the Jackson Heart Study (JHS) and evaluated associations between APOL1 genotypes and renal and cardiovascular phenotypes. Previously identified association between APOL1 genotypes and chronic kidney disease was confirmed (P=2.4×10−6). Among JHS participants with 2 APOL1 risk alleles, we observed increased risk for CVD (50/763 events among participants without versus 37/280 events among participants with 2 risk alleles; odds ratio, 2.17; P=9.4×10−4). We replicated this novel association of APOL1 genotype with CVD in Women’s Health Initiative (WHI) participants (66/292 events among participants without versus 37/101 events among participants with 2 risk alleles; odds ratio, 1.98; P=8.37×10−3; JHS and WHI combined, P=8.5×10−5; odds ratio, 2.12). The increased risk for CVD conferred by APOL1 alleles was robust to correction for both traditional CVD risk factors and chronic kidney disease. Conclusions: APOL1 variants contribute to atherosclerotic CVD risk, indicating a genetic component to cardiovascular health disparities in individuals of African ancestry. The considerable population of African Americans with 2 APOL1 risk alleles may benefit from intensive interventions to reduce CVD.


American Journal of Human Genetics | 2012

Burden of rare sarcomere gene variants in the Framingham and Jackson Heart Study cohorts.

Alexander G. Bick; Jason Flannick; Kaoru Ito; Susan Cheng; Michael Parfenov; Daniel S. Herman; Steven R. DePalma; Namrata Gupta; Stacey B. Gabriel; Birgit Funke; Heidi L. Rehm; Emelia J. Benjamin; Jayashri Aragam; Herman A. Taylor; Ervin R. Fox; Christopher Newton-Cheh; Sekar Kathiresan; Christopher J. O’Donnell; James G. Wilson; David Altshuler; Joel N. Hirschhorn; Jonathan G. Seidman; Christine E. Seidman

Rationale: Congenital heart disease (CHD) is among the most common birth defects. Most cases are of unknown pathogenesis. Objective: To determine the contribution of de novo copy number variants (CNVs) in the pathogenesis of sporadic CHD. Methods and Results: We studied 538 CHD trios using genome-wide dense single nucleotide polymorphism arrays and whole exome sequencing. Results were experimentally validated using digital droplet polymerase chain reaction. We compared validated CNVs in CHD cases with CNVs in 1301 healthy control trios. The 2 complementary high-resolution technologies identified 63 validated de novo CNVs in 51 CHD cases. A significant increase in CNV burden was observed when comparing CHD trios with healthy trios, using either single nucleotide polymorphism array (P=7×10−5; odds ratio, 4.6) or whole exome sequencing data (P=6×10−4; odds ratio, 3.5) and remained after removing 16% of de novo CNV loci previously reported as pathogenic (P=0.02; odds ratio, 2.7). We observed recurrent de novo CNVs on 15q11.2 encompassing CYFIP1, NIPA1, and NIPA2 and single de novo CNVs encompassing DUSP1, JUN, JUP, MED15, MED9, PTPRE SREBF1, TOP2A, and ZEB2, genes that interact with established CHD proteins NKX2-5 and GATA4. Integrating de novo variants in whole exome sequencing and CNV data suggests that ETS1 is the pathogenic gene altered by 11q24.2-q25 deletions in Jacobsen syndrome and that CTBP2 is the pathogenic gene in 10q subtelomeric deletions. Conclusions: We demonstrate a significantly increased frequency of rare de novo CNVs in CHD patients compared with healthy controls and suggest several novel genetic loci for CHD.

Collaboration


Dive into the Steven R. DePalma's collaboration.

Top Co-Authors

Avatar

Christine E. Seidman

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge