Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven R.H. Barrett is active.

Publication


Featured researches published by Steven R.H. Barrett.


Energy and Environmental Science | 2014

Production of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic processing of biomass

Jesse Q. Bond; Aniruddha A. Upadhye; Hakan Olcay; Geoffrey A. Tompsett; Jungho Jae; Rong Xing; David Martin Alonso; Dong Wang; Taiying Zhang; Rajeev Kumar; Andrew J. Foster; S. Murat Sen; Christos T. Maravelias; Robert Malina; Steven R.H. Barrett; Raul F. Lobo; Charles E. Wyman; James A. Dumesic; George W. Huber

This article presents results from experimental studies and techno-economic analysis of a catalytic process for the conversion of whole biomass into drop-in aviation fuels with maximal carbon yields. The combined research areas highlighted include biomass pretreatment, carbohydrate hydrolysis and dehydration, and catalytic upgrading of platform chemicals. The technology centers on first producing furfural and levulinic acid from five- and six-carbon sugars present in hardwoods and subsequently upgrading these two platforms into a mixture of branched, linear, and cyclic alkanes of molecular weight ranges appropriate for use in the aviation sector. Maximum selectivities observed in laboratory studies suggest that, with efficient interstage separations and product recovery, hemicellulose sugars can be incorporated into aviation fuels at roughly 80% carbon yield, while carbon yields to aviation fuels from cellulose-based sugars are on the order of 50%. The use of lignocellulose-derived feedstocks rather than commercially sourced model compounds in process integration provided important insights into the effects of impurity carryover and additionally highlights the need for stable catalytic materials for aqueous phase processing, efficient interstage separations, and intensified processing strategies. In its current state, the proposed technology is expected to deliver jet fuel-range liquid hydrocarbons for a minimum selling price of


Environmental Science & Technology | 2010

Global Mortality Attributable to Aircraft Cruise Emissions

Steven R.H. Barrett; Re Britter; Ian A. Waitz

4.75 per gallon assuming nth commercial plant that produces 38 million gallons liquid fuels per year with a net present value of the 20 year biorefinery set to zero. Future improvements in this technology, including replacing precious metal catalysts by base metal catalysts and improving the recyclability of water streams, can reduce this cost to


Environmental Science & Technology | 2012

Public health impacts of combustion emissions in the United Kingdom.

Steve H.L. Yim; Steven R.H. Barrett

2.88 per gallon.


Environmental Science & Technology | 2013

Water consumption footprint and land requirements of large-scale alternative diesel and jet fuel production.

Mark D. Staples; Hakan Olcay; Robert M. Malina; Parthsarathi Trivedi; Matthew N. Pearlson; Kenneth Strzepek; Sergey Paltsev; Christoph Wollersheim; Steven R.H. Barrett

Aircraft emissions impact human health though degradation of air quality. The majority of previous analyses of air quality impacts from aviation have considered only landing and takeoff emissions. We show that aircraft cruise emissions impact human health over a hemispheric scale and provide the first estimate of premature mortalities attributable to aircraft emissions globally. We estimate ∼8000 premature mortalities per year are attributable to aircraft cruise emissions. This represents ∼80% of the total impact of aviation (where the total includes the effects of landing and takeoff emissions), and ∼1% of air quality-related premature mortalities from all sources. However, we note that the impact of landing and takeoff emissions is likely to be under-resolved. Secondary H(2)SO(4)-HNO(3)-NH(3) aerosols are found to dominate mortality impacts. Due to the altitude and region of the atmosphere at which aircraft emissions are deposited, the extent of transboundary air pollution is particularly strong. For example, we describe how strong zonal westerly winds aloft, the mean meridional circulation around 30-60°N, interaction of aircraft-attributable aerosol precursors with background ammonia, and high population densities in combination give rise to an estimated ∼3500 premature mortalities per year in China and India combined, despite their relatively small current share of aircraft emissions. Subsidence of aviation-attributable aerosol and aerosol precursors occurs predominantly around the dry subtropical ridge, which results in reduced wet removal of aviation-attributable aerosol. It is also found that aircraft NO(x) emissions serve to increase oxidation of nonaviation SO(2), thereby further increasing the air quality impacts of aviation. We recommend that cruise emissions be explicitly considered in the development of policies, technologies and operational procedures designed to mitigate the air quality impacts of air transportation.


Energy and Environmental Science | 2014

Lifecycle greenhouse gas footprint and minimum selling price of renewable diesel and jet fuel from fermentation and advanced fermentation production technologies

Mark D. Staples; Robert Malina; Hakan Olcay; Matthew N. Pearlson; James I. Hileman; Adam M. Boies; Steven R.H. Barrett

Combustion emissions are a major contributor to degradation of air quality and pose a risk to human health. We evaluate and apply a multiscale air quality modeling system to assess the impact of combustion emissions on UK air quality. Epidemiological evidence is used to quantitatively relate PM(2.5) exposure to risk of early death. We find that UK combustion emissions cause ∼13,000 premature deaths in the UK per year, while an additional ∼6000 deaths in the UK are caused by non-UK European Union (EU) combustion emissions. The leading domestic contributor is transport, which causes ∼7500 early deaths per year, while power generation and industrial emissions result in ∼2500 and ∼830 early deaths per year, respectively. We estimate the uncertainty in premature mortality calculations at -80% to +50%, where results have been corrected by a low modeling bias of 28%. The total monetized life loss in the UK is estimated at £6-62bn/year or 0.4-3.5% of gross domestic product. In Greater London, where PM concentrations are highest and are currently in exceedance of EU standards, we estimate that non-UK EU emissions account for 30% of the ∼3200 air quality-related deaths per year. In the context of the European Commission having launched infringement proceedings against the UK Government over exceedances of EU PM air quality standards in London, these results indicate that further policy measures should be coordinated at an EU-level because of the strength of the transboundary component of PM pollution.


Environmental Research Letters | 2014

Quantifying the climate impacts of albedo changes due to biofuel production: a comparison with biogeochemical effects.

Fabio Caiazzo; Robert Malina; Mark D. Staples; Philip J. Wolfe; Steve H.L. Yim; Steven R.H. Barrett

Middle distillate (MD) transportation fuels, including diesel and jet fuel, make up almost 30% of liquid fuel consumption in the United States. Alternative drop-in MD and biodiesel could potentially reduce dependence on crude oil and the greenhouse gas intensity of transportation. However, the water and land resource requirements of these novel fuel production technologies must be better understood. This analysis quantifies the lifecycle green and blue water consumption footprints of producing: MD from conventional crude oil; Fischer-Tropsch MD from natural gas and coal; fermentation and advanced fermentation MD from biomass; and hydroprocessed esters and fatty acids MD and biodiesel from oilseed crops, throughout the contiguous United States. We find that FT MD and alternative MD derived from rainfed biomass have lifecycle blue water consumption footprints of 1.6 to 20.1 Lwater/LMD, comparable to conventional MD, which ranges between 4.1 and 7.4 Lwater/LMD. Alternative MD derived from irrigated biomass has a lifecycle blue water consumption footprint potentially several orders of magnitude larger, between 2.7 and 22 600 Lwater/LMD. Alternative MD derived from biomass has a lifecycle green water consumption footprint between 1.1 and 19 200 Lwater/LMD. Results are disaggregated to characterize the relationship between geo-spatial location and lifecycle water consumption footprint. We also quantify the trade-offs between blue water consumption footprint and areal MD productivity, which ranges from 490 to 4200 LMD/ha, under assumptions of rainfed and irrigated biomass cultivation. Finally, we show that if biomass cultivation for alternative MD is irrigated, the ratio of the increase in areal MD productivity to the increase in blue water consumption footprint is a function of geo-spatial location and feedstock-to-fuel production pathway.


Environmental Science & Technology | 2014

Economic and environmental benefits of higher-octane gasoline.

Raymond L. Speth; Eric W. Chow; Robert M. Malina; Steven R.H. Barrett; John B. Heywood; William H. Green

Fermentation and advanced fermentation (AF) biofuel production technologies may offer a means to reduce the greenhouse gas (GHG) intensity of transportation by providing renewable drop-in alternatives to conventional middle distillate (MD) fuels, including diesel and jet fuel. To the best of our knowledge, this is the first peer-reviewed study of the environmental and economic feasibility of AF technologies. We find that the attributional lifecycle GHG footprint of AF MD from sugar cane, corn grain and switchgrass ranges from −27.0 to 19.7, 47.5 to 117.5, and 11.7 to 89.8 gCO2e/MJMD, respectively, compared to 90.0 gCO2e/MJMD for conventional MD. These results are most sensitive to the co-product allocation method used, the efficiency and utility requirements of feedstock-to-fuel conversion, and the co-generation technology employed. We also calculate the minimum selling price (MSP) of MD fuel produced from sugar cane, corn grain and switchgrass AF as a range from 0.61 to 2.63, 0.84 to 3.65, and 1.09 to 6.30


Environmental Research Letters | 2015

Global, regional and local health impacts of civil aviation emissions

Steve H.L. Yim; Gideon Lee; In Hwan Lee; Florian Allroggen; Akshay Ashok; Fabio Caiazzo; Sebastian D. Eastham; Robert Malina; Steven R.H. Barrett

per literMD, respectively, compared to the current price of conventional MD in the United States of approximately 0.80


Bioresource Technology | 2015

Biomass logistics analysis for large scale biofuel production: case study of loblolly pine and switchgrass.

Xiaoming Lu; Mitch R. Withers; Navid Seifkar; Randall P. Field; Steven R.H. Barrett; Howard J. Herzog

per literMD. The MSP results are most sensitive to feedstock-to-fuel conversion efficiency, feedstock costs, and capital costs. Finally, we demonstrate that emissions from land use change (LUC) directly attributable to the growth of biomass for AF fuel could dominate the GHG footprint of AF MD fuels.


Environmental Science & Technology | 2013

Global Civil Aviation Black Carbon Emissions

Marc E.J. Stettler; Adam M. Boies; Andreas Petzold; Steven R.H. Barrett

Lifecycle analysis is a tool widely used to evaluate the climate impact of greenhouse gas emissions attributable to the production and use of biofuels. In this paper we employ an augmented lifecycle framework that includes climate impacts from changes in surface albedo due to land use change. We consider eleven land-use change scenarios for the cultivation of biomass for middle distillate fuel production, and compare our results to previous estimates of lifecycle greenhouse gas emissions for the same set of land-use change scenarios in terms of CO2e per unit of fuel energy. We find that two of the land-use change scenarios considered demonstrate a warming effect due to changes in surface albedo, compared to conventional fuel, the largest of which is for replacement of desert land with salicornia cultivation. This corresponds to 222 gCO2e=MJ, equivalent to 3890% and 247% of the lifecycle GHG emissions of fuels derived from salicornia and crude oil, respectively. Nine of the land-use change scenarios considered demonstrate a cooling effect, the largest of which is for the replacement of tropical rainforests with soybean cultivation. This corresponds to 161 gCO2e=MJ, or 28% and 178% of the lifecycle greenhouse gas emissions of fuels derived from soybean and crude oil, respectively. These results indicate that changes in surface albedo have the potential to dominate the climate impact of biofuels, and we conclude that accounting for changes in surface albedo is necessary for a complete assessment of the aggregate climate impacts of biofuel production and use.

Collaboration


Dive into the Steven R.H. Barrett's collaboration.

Top Co-Authors

Avatar

Robert Malina

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Sebastian D. Eastham

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Akshay Ashok

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ian A. Waitz

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mark D. Staples

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Steve H.L. Yim

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Philip J. Wolfe

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Re Britter

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Christopher K. Gilmore

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Raymond L. Speth

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge