Steven R. Laviolette
University of Western Ontario
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Steven R. Laviolette.
The Journal of Neuroscience | 2005
Steven R. Laviolette; Witold J. Lipski; Anthony A. Grace
The basolateral nucleus of the amygdala (BLA) and medial prefrontal cortex (mPFC) are involved importantly in the processing and encoding of emotionally salient learned associations. Here, we examined the possible role of the mPFC in the acquisition and encoding of emotional associative learning at the behavioral and single-neuron level. A subpopulation of neurons in the mPFC that received monosynaptic and orthodromic inputs from the BLA demonstrated strong associative responding to odors paired previously with footshock by increasing spontaneous activity and bursting activity. This occurred specifically in response to postconditioning presentations of the footshock-paired odors but not to odors presented in the absence of footshock. In contrast, mPFC neurons that failed to respond to BLA stimulation showed no associative responding. Systemic or intra-mPFC blockade of dopamine (DA) D4 receptors prevented this emotional associative learning in neurons of the mPFC and blocked the expression of olfactory conditioned fear. These results demonstrate that individual neurons in the mPFC that receive a functional input from the BLA actively encode emotional learning and that this process depends on DA D4 receptor stimulation in the mPFC.
The Journal of Neuroscience | 2006
Steven R. Laviolette; Anthony A. Grace
Cannabinoids represent one of the most commonly used hallucinogenic drug classes. In addition, cannabis use is a primary risk factor for schizophrenia in susceptible individuals and can potently modulate the emotional salience of sensory stimuli. We report that systemic activation or blockade of cannabinoid CB1 receptors modulates emotional associative learning and memory formation in a subpopulation of neurons in the mammalian medial prefrontal cortex (mPFC) that receives functional input from the basolateral amygdala (BLA). Using in vivo single-unit recordings in rats, we found that a CB1 receptor agonist potentiated the response of medial prefrontal cortical neurons to olfactory cues paired previously with a footshock, whereas this associative responding was prevented by a CB1 receptor antagonist. In an olfactory fear-conditioning procedure, CB1 agonist microinfusions into the mPFC enabled behavioral responses to olfactory cues paired with normally subthreshold footshock, whereas the antagonist completely blocked emotional learning. These results are the first demonstration that cannabinoid signaling in the mPFC can modulate the magnitude of neuronal emotional learning plasticity and memory formation through functional inputs from the BLA.
The Journal of Neuroscience | 2013
Kyle K. Pitchers; Vincent Vialou; Eric J. Nestler; Steven R. Laviolette; Michael N. Lehman; Lique M. Coolen
Drugs of abuse induce neuroplasticity in the natural reward pathway, specifically the nucleus accumbens (NAc), thereby causing development and expression of addictive behavior. Recent evidence suggests that natural rewards may cause similar changes in the NAc, suggesting that drugs may activate mechanisms of plasticity shared with natural rewards, and allowing for unique interplay between natural and drug rewards. In this study, we demonstrate that sexual experience in male rats when followed by short or prolonged periods of loss of sex reward causes enhanced amphetamine reward, indicated by sensitized conditioned place preference for low-dose (0.5 mg/kg) amphetamine. Moreover, the onset, but not the longer-term expression, of enhanced amphetamine reward was correlated with a transient increase in dendritic spines in the NAc. Next, a critical role for the transcription factor ΔFosB in sex experience-induced enhanced amphetamine reward and associated increases in dendritic spines on NAc neurons was established using viral vector gene transfer of the dominant-negative binding partner ΔJunD. Moreover, it was demonstrated that sexual experience-induced enhanced drug reward, ΔFosB, and spinogenesis are dependent on mating-induced dopamine D1 receptor activation in the NAc. Pharmacological blockade of D1 receptor, but not D2 receptor, in the NAc during sexual behavior attenuated ΔFosB induction and prevented increased spinogenesis and sensitized amphetamine reward. Together, these findings demonstrate that drugs of abuse and natural reward behaviors act on common molecular and cellular mechanisms of plasticity that control vulnerability to drug addiction, and that this increased vulnerability is mediated by ΔFosB and its downstream transcriptional targets.
Cerebral Cortex | 2010
Hongzhuan Tan; Nicole M. Lauzon; Stephanie F. Bishop; Melanie Bechard; Steven R. Laviolette
The cannabinoid CB1 receptor system is functionally involved in the processing and encoding of emotionally salient sensory information, learning and memory. The CB1 receptor is found in high concentrations in brain structures that are critical for emotional processing, including the basolateral amygdala (BLA) and the medial prefrontal cortex (mPFC). In addition, synaptic plasticity in the form of long-term potentiation (LTP) within the BLA > mPFC pathway is an established correlate of exposure to emotionally salient events. We performed a series of in vivo LTP studies by applying tetanic stimulation to the BLA combined with recordings of local field potentials within prelimbic cortical (PLC) region of the rat mPFC. Systemic pretreatment with AM-251 dose dependently blocked LTP along the BLA-PLC pathway and also the behavioral acquisition of conditioned fear memories. We next performed a series of microinfusion experiments wherein CB1 receptor transmission within the BLA > PLC circuit was pharmacologically blocked. Asymmetrical, interhemispheric blockade of CB1 receptor transmission along the BLA > PLC pathway prevented the acquisition of emotionally salient associative memory. Our results indicate that coordinated CB1 receptor transmission within the BLA > PLC pathway is critically involved in the encoding of emotional fear memories and modulates neural plasticity related to the encoding of emotionally salient associative learning.
The Journal of Neuroscience | 2011
Alessandra Lintas; Ning Chi; Nicole M. Lauzon; Stephanie F. Bishop; Shervin Gholizadeh; Ninglei Sun; Steven R. Laviolette
The basolateral amygdala (BLA), ventral tegmental area (VTA), and nucleus accumbens (NAc) play central roles in the processing of opiate-related associative reward learning and memory. The BLA receives innervation from dopaminergic fibers originating in the VTA, and both dopamine (DA) D1 and D2 receptors are expressed in this region. Using a combination of in vivo single-unit extracellular recording in the NAc combined with behavioral pharmacology studies, we have identified a double dissociation in the functional roles of DA D1 versus D2 receptor transmission in the BLA, which depends on opiate exposure state; thus, in previously opiate-naive rats, blockade of intra-BLA D1, but not D2, receptor transmission blocked the acquisition of associative opiate reward memory, measured in an unbiased conditioned place preference procedure. In direct contrast, in rats made opiate dependent and conditioned in a state of withdrawal, intra-BLA D2, but not D1, receptor blockade blocked opiate reward encoding. This functional switch was dependent on cAMP signaling as comodulation of intra-BLA cAMP levels reversed or replicated the functional effects of intra-BLA D1 or D2 transmission during opiate reward processing. Single-unit in vivo extracellular recordings performed in neurons of the NAc confirmed an opiate-state-dependent role for BLA D1/D2 transmission in NAc neuronal response patterns to morphine. Our results characterize and identify a novel opiate addiction switching mechanism directly in the BLA that can control the processing of opiate reward information as a direct function of opiate exposure state via D1 or D2 receptor signaling substrates.
Behavioural Brain Research | 2010
Nicole M. Lauzon; Steven R. Laviolette
Dopamine (DA) transmission within cortical and subcortical structures is involved critically in the processing of emotionally relevant sensory information. Three interconnected neural regions, the medial prefrontal cortex (mPFC), basolateral nucleus of the amygdala (BLA) and the ventral tegmental area (VTA) have received considerable experimental attention, both in animal and clinical research models, as essential interconnected processors of emotional information. Neuronal network activity within both the mPFC and BLA are strongly modified by DA inputs from the VTA through both DA D(2)-like and D(1)-like receptors. However, emerging evidence from clinical, genetic, behavioral and electrophysiological investigations demonstrates a critical role for the DA D(4)-receptor subtype as a crucial modulator of emotional memory encoding and expression, both at the level of the single neuron, and at the systems level. In this review, we will examine recent evidence at the neuronal, behavioral and genetic levels of analysis that increasingly demonstrates an important role for DA D(4) transmission within cortical and subcortical emotional processing circuits. We will present evidence and some theoretical frameworks suggesting how disturbances in D(4)-receptor related neural circuitry may be involved in the neuropathological manifestations common in many neuropsychiatric disorders including schizophrenia, attention-deficit hyperactivity disorder (ADHD) and addiction.
PLOS ONE | 2012
Kyle K. Pitchers; Susanne Schmid; Andrea R. Di Sebastiano; Xu Wang; Steven R. Laviolette; Michael N. Lehman; Lique M. Coolen
Natural reward and drugs of abuse converge upon the mesolimbic system which mediates motivation and reward behaviors. Drugs induce neural adaptations in this system, including transcriptional, morphological, and synaptic changes, which contribute to the development and expression of drug-related memories and addiction. Previously, it has been reported that sexual experience in male rats, a natural reward behavior, induces similar neuroplasticity in the mesolimbic system and affects natural reward and drug-related behavior. The current study determined whether sexual experience causes long-lasting changes in mating, or ionotropic glutamate receptor trafficking or function in the nucleus accumbens (NAc), following 3 different reward abstinence periods: 1 day, 1 week, or 1 month after final mating session. Male Sprague Dawley rats mated during 5 consecutive days (sexual experience) or remained sexually naïve to serve as controls. Sexually experienced males displayed facilitation of initiation and performance of mating at each time point. Next, intracellular and membrane surface expression of N-methyl-D-aspartate (NMDA: NR1 subunit) and α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA: GluA1, GluA2 subunits) receptors in the NAc was determined using a bis(sulfosuccinimidyl)suberate (BS3) protein cross-linking assay followed by Western Blot analysis. NR1 expression was increased at 1 day abstinence both at surface and intracellular, but decreased at surface at 1 week of abstinence. GluA2 was increased intracellularly at 1 week and increased at the surface after 1 month of abstinence. Finally, whole-cell patch clamp electrophysiological recordings determined reduced AMPA/NMDA ratio of synaptic currents in NAc shell neurons following stimulation of cortical afferents in sexually experienced males after all reward abstinence periods. Together, these data show that sexual experience causes long-term alterations in glutamate receptor expression and function in the NAc. Although not identical, this sex experience-induced neuroplasticity has similarities to that caused by psychostimulants, suggesting common mechanisms for reinforcement of natural and drug reward.
Cerebral Cortex | 2011
Stephanie F. Bishop; Nicole M. Lauzon; Melanie Bechard; Shervin Gholizadeh; Steven R. Laviolette
The medial prefrontal cortex (mPFC) plays a significant role in associative learning and memory formation during the opiate addiction process. Various lines of evidence demonstrate that glutamatergic (GLUT) transmission through the N-methyl D-aspartate (NMDA) receptor can modulate neuronal network activity within the mPFC and influence dopaminergic signaling within the mesocorticolimbic pathway. However, little is known about how modulation of NMDA receptor signaling within the mPFC may regulate associative opiate reward learning and memory formation. Using a conditioned place preference (CPP) procedure, we examined the effects of selective NMDA receptor blockade directly within the prelimbic cortex (PLC) during the acquisition of associative opiate reward learning. NMDA receptor blockade specifically within the PLC caused a strong potentiation in the rewarding effects of either systemic or intra-ventral tegmental area (intra-VTA) morphine administration. This reward potentiation was dose dependently blocked by coadministration of dopamine D1 or D2 receptor antagonists and by blockade of presynaptic GLUT release. In addition, pharmacological inactivation of the basolateral amygdala (BLA) also prevented intra-PLC NMDA receptor blockade-induced potentiation of opiate reward signals, demonstrating a functional interaction between inputs from the VTA and BLA within the PLC, during the encoding and modulation of associative opiate reward information.
European Journal of Neuroscience | 2012
Alessandra Lintas; Ning Chi; Nicole M. Lauzon; Stephanie F. Bishop; Ninglei Sun; Steven R. Laviolette
The basolateral amygdala (BLA), ventral tegmental area and nucleus accumbens (NAc) form a functionally connected neural circuit involved in the processing of opiate‐related reward and memory. Dopamine (DA) projections from the ventral tegmental area to the BLA modulate associative plasticity mechanisms within the BLA. However, the role of DA receptor signaling in the BLA and its functional outputs to the NAc during opiate reward processing is not currently understood. Using an unbiased place conditioning procedure, we measured the rewarding effects of morphine following intra‐BLA microinfusions of specific DA D1 or D2 receptor agonists in either opiate‐naive or opiate‐dependent/withdrawn rats. Activation of intra‐BLA D1 receptors strongly potentiated the behaviorally rewarding effects of opiates, only in the opiate‐naive state. However, once opiate dependence and withdrawal occurred, the intra‐BLA DA‐mediated potentiation of opiate reward salience switched to a D2 receptor‐dependent substrate. We next performed single‐unit, in‐vivo extracellular neuronal recordings in the NAc shell (NA shell), to determine if intra‐BLA D1/D2 receptor activation may modulate the NA shell neuronal response patterns to morphine. Consistent with our behavioral results, intra‐BLA D1 or D2 receptor activation potentiated NAc ‘shell’ (NA shell) neuronal responses to sub‐reward threshold opiate administration, following the same functional boundary between the opiate‐naive and opiate‐dependent/withdrawn states. Finally, blockade of N‐methyl‐d‐aspartate transmission within the NA shell blocked intra‐BLA DA D1 or D2 receptor‐mediated opiate reward potentiation. Our findings demonstrate a novel and functional DA D1/D2 receptor‐mediated opiate reward memory switch within the BLA→NA shell circuit that controls opiate reward magnitude as a function of opiate exposure state.
Cerebral Cortex | 2011
Ninglei Sun; Ning Chi; Nicole M. Lauzon; Stephanie F. Bishop; Steven R. Laviolette
The medial prefrontal cortex (mPFC) comprises an important component in the neural circuitry underlying drug-related associative learning and memory processing. Neuronal activation within mPFC circuits is correlated with the recall of opiate-related drug-taking experiences in both humans and other animals. Using an unbiased associative place conditioning procedure, we recorded mPFC neuronal populations during the acquisition, recall, and extinction phases of morphine-related associative learning and memory. Our analyses revealed that mPFC neurons show increased activity both in terms of tonic and phasic activity patterns during the acquisition phase of opiate reward-related memory and demonstrate stimulus-locked associative activity changes in real time, during the recall of opiate reward memories. Interestingly, mPFC neuronal populations demonstrated divergent patterns of bursting activity during the acquisition versus recall phases of newly acquired opiate reward memory, versus the extinction of these memories, with strongly increased bursting during the recall of an extinction memory and no associative bursting during the recall of a newly acquired opiate reward memory. Our results demonstrate that neurons within the mPFC are involved in both the acquisition, recall, and extinction of opiate-related reward memories, showing unique patterns of tonic and phasic activity patterns during these separate components of the opiate-related reward learning and memory recall.