Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven R. Lentz is active.

Publication


Featured researches published by Steven R. Lentz.


Journal of Clinical Investigation | 2001

Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways

Geoff H. Werstuck; Steven R. Lentz; Sanjana Dayal; Gazi S. Hossain; Sudesh K. Sood; Yuan Y. Shi; Ji Zhou; Nobuyo Maeda; Skaidrite K. Krisans; M. Rene Malinow; Richard C. Austin

Hepatic steatosis is common in patients having severe hyperhomocysteinemia due to deficiency for cystathionine beta-synthase. However, the mechanism by which homocysteine promotes the development and progression of hepatic steatosis is unknown. We report here that homocysteine-induced endoplasmic reticulum (ER) stress activates both the unfolded protein response and the sterol regulatory element-binding proteins (SREBPs) in cultured human hepatocytes as well as vascular endothelial and aortic smooth muscle cells. Activation of the SREBPs is associated with increased expression of genes responsible for cholesterol/triglyceride biosynthesis and uptake and with intracellular accumulation of cholesterol. Homocysteine-induced gene expression was inhibited by overexpression of the ER chaperone, GRP78/BiP, thus demonstrating a direct role of ER stress in the activation of cholesterol/triglyceride biosynthesis. Consistent with these in vitro findings, cholesterol and triglycerides were significantly elevated in the livers, but not plasmas, of mice having diet-induced hyperhomocysteinemia. This effect was not due to impaired hepatic export of lipids because secretion of VLDL-triglyceride was increased in hyperhomocysteinemic mice. These findings suggest a mechanism by which homocysteine-induced ER stress causes dysregulation of the endogenous sterol response pathway, leading to increased hepatic biosynthesis and uptake of cholesterol and triglycerides. Furthermore, this mechanism likely explains the development and progression of hepatic steatosis and possibly atherosclerotic lesions observed in hyperhomocysteinemia.


Journal of Clinical Investigation | 1996

Vascular dysfunction in monkeys with diet-induced hyperhomocyst(e)inemia.

Steven R. Lentz; C G Sobey; Donald J. Piegors; M Y Bhopatkar; Frank M. Faraci; M. R. Malinow; Donald D. Heistad

Elevated plasma homocyst(e)ine may predispose to complications of vascular disease. Homocysteine alters vasomotor regulatory and anticoagulant properties of cultured vascular endothelial cells, but little is known about effects of hyperhomocyst(e)inemia on vascular function in vivo. We tested the hypothesis that diet-induced moderate hyperhomocyst(e)inemia is associated with vascular dysfunction in cynomolgus monkeys. Plasma homocyst(e)ine increased from 4.O +/- O.2 microM when monkeys were fed normal diet to 10.6 +/- 2.6 microM when they were fed modified diet (mean +/- SE; P = 0.02). Vasomotor responses were assessed in vivo by quantitative angiography and Doppler measurement of blood flow velocity. In response to activation of platelets by intraarterial infusion of collagen, blood flow to the leg decreased by 42 +/- 9% in monkeys fed modified diet, compared with 14 +/- 11% in monkeys fed normal diet (P = 0.008), Responses of resistance vessels to the endothelium-dependent vasodilators acetylcholine and ADP were markedly impaired in hyperhomocyst(e)inemic monkeys, which suggests that increased vasoconstriction in response to collagen may be caused by decreased vasodilator responsiveness to platelet-generated ADP. Relaxation to acetylcholine and, to a lesser extent, nitroprusside, was impaired ex vivo in carotid arteries from monkeys fed modified diet. Thrombomodulin anticoagulant activity in aorta decreased by 34 +/- 15% in hyperhomocyst(e)inemic monkeys (P = 0.03). We conclude that diet-induced moderate hyperhomocyst(e)inemia is associated with altered vascular function.


Journal of Clinical Investigation | 1991

Inhibition of thrombomodulin surface expression and protein C activation by the thrombogenic agent homocysteine.

Steven R. Lentz; J E Sadler

Elevated levels of plasma homocysteine are associated with both venous and arterial thrombosis. Homocysteine inhibits the function of thrombomodulin, an anticoagulant glycoprotein on the endothelial surface that serves as a cofactor for the activation of protein C by thrombin. The effects of homocysteine on thrombomodulin expression and protein C activation were investigated in cultured human umbilical vein endothelial cells and CV-1(18A) cells that express recombinant human thrombomodulin. Addition of 5 mM homocysteine to endothelial cells produced slight increases in thrombomodulin mRNA and thrombomodulin synthesis without affecting cell viability. In both cell types, thrombomodulin synthesized in the presence of homocysteine remained sensitive to digestion with endoglycosidase H and failed to appear on the cell surface, suggesting impaired transit along the secretory pathway. In a cell-free protein C activation assay, homocysteine irreversibly inactivated both thrombomodulin and protein C in a process that required free thiol groups and was inhibited by the oxidizing agents diamide or N-ethylmaleimide. By inhibiting both thrombomodulin surface expression and protein C activation, homocysteine may contribute to the development of thrombosis in patients with cystathionine beta-synthase deficiency.


Cell Death & Differentiation | 2004

Role of hyperhomocysteinemia in endothelial dysfunction and atherothrombotic disease

Richard C. Austin; Steven R. Lentz; Geoff H. Werstuck

AbstractHyperhomocysteinemia (HHcy) is an independent risk factor for cardiovascular disease, including ischemic heart disease, stroke, and peripheral vascular disease. Mutations in the enzymes responsible for homocysteine metabolism, particularly cystathionine β-synthase (CBS) or 5,10-methylenetetrahydrofolate reductase (MTHFR), result in severe forms of HHcy. Additionally, nutritional deficiencies in B vitamin cofactors required for homocysteine metabolism, including folic acid, vitamin B6 (pyridoxal phosphate), and/or B12 (methylcobalamin), can induce HHcy. Studies using animal models of genetic- and diet-induced HHcy have recently demonstrated a causal relationship between HHcy, endothelial dysfunction, and accelerated atherosclerosis. Dietary enrichment in B vitamins attenuates these adverse effects of HHcy. Although oxidative stress and activation of proinflammatory factors have been proposed to explain the atherogenic effects of HHcy, recent in vitro and in vivo studies demonstrate that HHcy induces endoplasmic reticulum (ER) stress, leading to activation of the unfolded protein response (UPR). This review summarizes the current role of HHcy in endothelial dysfunction and explores the cellular mechanisms, including ER stress, that contribute to atherothrombosis.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2000

Plasma Concentration of Asymmetric Dimethylarginine, an Endogenous Inhibitor of Nitric Oxide Synthase, Is Elevated in Monkeys With Hyperhomocyst(e)inemia or Hypercholesterolemia

Rainer H. Böger; Stefanie M. Bode-Böger; Karsten Sydow; Donald D. Heistad; Steven R. Lentz

Hyperhomocyst(e)inemia is associated with endothelial dysfunction. Mechanisms responsible for endothelial dysfunction in hyperhomocyst(e)inemia may involve impaired bioavailability of endothelium-dependent nitric oxide. We tested the hypothesis that hyperhomocyst(e)inemia is associated with an elevated plasma concentration of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase. One group of adult cynomolgus monkeys was fed either a control or hyperhomocyst(e)inemic diet for 4 weeks in a randomized crossover design. The second group was fed an atherogenic diet that produces both hyperhomocyst(e)inemia and hypercholesterolemia for 17 months, followed by an atherogenic diet supplemented with B vitamins for 6 months to decrease plasma homocyst(e)ine concentration. Human endothelial cells were used to study the effects of methionine and homocysteine in the presence or absence of B vitamins or the methylation inhibitor S-adenosylhomocysteine on the formation of ADMA and its inactive stereoisomer, symmetric dimethylarginine. The hyperhomocyst(e)inemic diet produced 2- to 3-fold increases in plasma levels of homocyst(e)ine and ADMA (both P<0.05). The atherogenic diet also produced elevated plasma levels of homocyst(e)ine and ADMA (both P<0. 05). Supplementation of the atherogenic diet with B vitamins decreased the plasma levels of homocyst(e)ine but did not affect the plasma levels of ADMA or endothelial function. There was a strong correlation between plasma ADMA and homocyst(e)ine and a strong inverse correlation between ADMA and carotid artery relaxation to acetylcholine. ADMA release by cultured endothelial cells was significantly increased in the presence of methionine or homocysteine. This effect was blocked by S-adenosylhomocysteine but not by B vitamins. We conclude that plasma levels of ADMA are elevated in hyperhomocyst(e)inemia. Because ADMA acts as a competitive inhibitor of endothelial nitric oxide synthase, these findings suggest a novel mechanism for impaired endothelial function in hyperhomocyst(e)inemia.


Journal of Thrombosis and Haemostasis | 2005

Mechanisms of homocysteine-induced atherothrombosis

Steven R. Lentz

Summary.  Elevation of plasma homocysteine level is a risk factor for cardiovascular disease, stroke, and venous thromboembolism. It is still uncertain, however, whether hyperhomocysteinemia is a causative factor or a marker of vascular disease. The strongest evidence that homocysteine plays a causal role in atherothrombosis has been provided by studies using animal models. In the past decade, considerable progress in defining the vascular effects of hyperhomocysteinemia was achieved through the use of genetic and dietary approaches to induce hyperhomocysteinemia in experimental animals. A key vascular phenotype observed in hyperhomocysteinemic animals is endothelial dysfunction, manifested by decreased bioavailability of endothelium‐derived nitric oxide. Impairment of endothelial function may be mediated by either accelerated oxidative inactivation of nitric oxide or inhibition of nitric oxide production caused by the endogenous nitric oxide synthase inhibitor, asymmetric dimethylarginine. Hyperhomocysteinemia also increases susceptibility to arterial thrombosis and accelerates the development of atherosclerosis in susceptible models such as the apolipoprotein E‐deficient mouse. Mechanisms of atherothrombosis may include homocysteine‐induced thiolation or acylation of plasma or endothelial proteins and endoplasmic reticulum stress, which activates signal transduction pathways leading to inflammation and apoptosis.


Immunity | 2003

Platelet-Mediated Modulation of Adaptive Immunity: A Communication Link between Innate and Adaptive Immune Compartments

Bennett D. Elzey; Jun Tian; Robert Jensen; Axel Karl Swanson; Jason R. Lees; Steven R. Lentz; Colleen S. Stein; Bernhard Nieswandt; Yiqiang Wang; Beverly L. Davidson; Timothy L. Ratliff

Platelets are highly reactive components of the circulatory system with well-documented hemostatic function. Recent studies extend platelet function to modulation of local inflammatory events through the release of chemokines, cytokines, and a number of immunomodulatory ligands, including CD154. We hypothesized that platelet-derived CD154 modulates adaptive immunity. The data reported herein demonstrate that platelets, via CD154, induce dendritic cell maturation, B cell isotype switching, and augment CD8(+) T cell responses both in vitro and in vivo. Platelet transfusion studies demonstrate that platelet-derived CD154 alone is sufficient to induce isotype switching and augment T lymphocyte function during viral infection, leading to enhanced protection against viral rechallenge. Additionally, depletion of platelets in normal mice results in decreased antigen-specific antibody production.


Clinical Science | 2001

Elevation of asymmetrical dimethylarginine may mediate endothelial dysfunction during experimental hyperhomocyst(e)inaemia in humans.

Rainer H. Böger; Steven R. Lentz; Stefanie M. Bode-Böger; Howard R. Knapp; William G. Haynes

Hyperhomocyst(e)inaemia is associated with endothelial dysfunction in animals and humans. Mechanisms responsible for endothelial dysfunction in hyperhomocyst(e)inaemia are poorly understood, but may involve impaired bioavailability of endothelium-derived nitric oxide (NO). We hypothesized that acute elevation of homocyst(e)ine by oral methionine loading may stimulate the formation of asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of NO synthase, due to a transmethylation reaction during the formation of homocyst(e)ine from methionine. We studied nine healthy human subjects (five males, four females) aged 29+/-2 years. Flow-mediated vasodilation (FMD) in the brachial artery (endothelium-dependent) and vasodilation induced by nitroglycerine (endothelium-independent) were measured with high-resolution ultrasound before and 8 h after oral methionine (100 mg/kg in cranberry juice) or placebo (cranberry juice), on separate days and in random order. Plasma homocyst(e)ine and ADMA concentrations were measured by specific HPLC methods. After a methionine bolus, elevation of homocyst(e)ine (28.4+/-3.5 micromol/l) was associated with an increased plasma concentration of ADMA (2.03+/-0.18 micromol/l) and reduced FMD (1.54+/-0.92%). Placebo had no effect on these parameters. There was a significant inverse linear relationship between ADMA concentration and FMD (r=-0.49; P<0.05), which was stronger than the relationship between the homocyst(e)ine concentration and FMD (r=-0.36; not significant). We conclude that acute elevation of the homocyst(e)ine concentration impairs vascular endothelial function by a mechanism in which an elevated concentration of ADMA may be involved. This finding may have importance for understanding the mechanism(s) leading to homocyst(e)ine-associated vascular disease, and its potential treatment.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2000

Homocysteine and Its Disulfide Derivatives A Suggested Consensus Terminology

S. H. Mudd; J. D. Finkelstein; Helga Refsum; Per Magne Ueland; M. R. Malinow; Steven R. Lentz; Donald W. Jacobsen; L. Brattström; Bridget Wilcken; D. E. L. Wilcken; Henk J. Blom; Sally P. Stabler; Robert H. Allen; Jacob Selhub; Irwin H. Rosenberg

In recent years, there has been an upsurge of interest in elevation of the plasma concentration of homocysteine and closely related metabolites as an independent risk factor for cardiovascular disease (reviewed, for example, in References 1 through 3). Homocysteine itself is a thiol(sulfhydryl-) containing amino acid, but in normal human plasma and other tissues, a variety of related disulfide derivatives may be present. Different authors have written about these compounds and their effects by using differing terminologies. To promote clarity of meaning and to minimize uncertainty, perhaps even confusion, it is important that each article discussing these compounds either defines explicitly the terms and/or abbreviations used or cites a prior publication in which such definitions are provided. Optimally, a more uniform consensus terminology will be developed and adopted by the field. This article describes very briefly the structures of the relevant compounds and sets forth terms and abbreviations that, it is hoped, may provide a basis


The Journal of Neuroscience | 2007

Protein Phosphatase 2A Methyltransferase Links Homocysteine Metabolism with Tau and Amyloid Precursor Protein Regulation

Estelle Sontag; Viyada Nunbhakdi-Craig; Jean-Marie Sontag; Ramon Diaz-Arrastia; Egon Ogris; Sanjana Dayal; Steven R. Lentz; Erland Arning; Teodoro Bottiglieri

Alzheimers disease (AD) neuropathology is characterized by the accumulation of phosphorylated tau and amyloid-β peptides derived from the amyloid precursor protein (APP). Elevated blood levels of homocysteine are a significant risk factor for many age-related diseases, including AD. Impaired homocysteine metabolism favors the formation of S-adenosylhomocysteine, leading to inhibition of methyltransferase-dependent reactions. Here, we show that incubation of neuroblastoma cells with S-adenosylhomocysteine results in reduced methylation of protein phosphatase 2A (PP2A), a major brain Ser/Thr phosphatase, most likely by inhibiting PP2A methyltransferase (PPMT). PP2A methylation levels are also decreased after ectopic expression of PP2A methylesterase in Neuro-2a (N2a) cells. Reduced PP2A methylation promotes the downregulation of Bα-containing holoenzymes, thereby affecting PP2A substrate specificity. It is associated with the accumulation of both phosphorylated tau and APP isoforms and increased secretion of β-secretase-cleaved APP fragments and amyloid-β peptides. Conversely, incubation of N2a cells with S-adenosylmethionine and expression of PPMT enhance PP2A methylation. This leads to the accumulation of dephosphorylated tau and APP species and increased secretion of neuroprotective α-secretase-cleaved APP fragments. Remarkably, hyperhomocysteinemia induced in wild-type and cystathionine-β-synthase +/− mice by feeding a high-methionine, low-folate diet is associated with increased brain S-adenosylhomocysteine levels, PPMT downregulation, reduced PP2A methylation levels, and tau and APP phosphorylation. We reported previously that downregulation of neuronal PPMT and PP2A methylation occur in affected brain regions from AD patients. The link between homocysteine, PPMT, PP2A methylation, and key CNS proteins involved in AD pathogenesis provides new mechanistic insights into this disorder.

Collaboration


Dive into the Steven R. Lentz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge