Steven R. Spielman
University of California, Berkeley
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Steven R. Spielman.
Aerosol Science and Technology | 2014
Susanne V. Hering; Steven R. Spielman; Gregory S. Lewis
Presented is a new approach for laminar-flow water condensation that produces saturations above 1.5 while maintaining temperatures of less than 30°C in the majority of the flow and providing an exiting dew point below 15°C. With the original laminar flow water condensation method, the particle activation and growth occurs in a region with warm, wetted walls throughout, which has the side-effect of heating the flow. The “moderated” approach presented here replaces this warm region with two sections—a short, warm, wet-walled “initiator,” followed by a cool-walled “moderator.” The initiator provides the water vapor that creates the supersaturation, while the moderator provides the time for particle growth. The combined length of the initiator and moderator sections is the same as that of the original, warm-walled growth section. Model results show that this new approach reduces the added heat and water vapor while achieving the same peak supersaturation and similar droplet growth. Experimental measurements confirm the trends predicted by the modeling. Copyright 2014 American Association for Aerosol Research
Aerosol Science and Technology | 2017
Susanne V. Hering; Gregory S. Lewis; Steven R. Spielman; Arantzazu Eiguren-Fernandez; Nathan M. Kreisberg; Chongai Kuang; Michel Attoui
ABSTRACT Presented is a laminar-flow, water-based condensation particle counter capable of particle detection near 1 nm. This instrument employs a three-stage, laminar-flow growth tube with a “moderator” stage that reduces the temperature and water content of the output flow without reducing the peak supersaturation, and makes feasible operation at the large temperature differences necessary for achieving high supersaturations. The instrument has an aerosol flow of 0.3 L/min, and does not use a filtered sheath flow. It is referred to as a “versatile” water condensation particle counter, or vWCPC, as operating temperatures can be adjusted in accordance with the cut-point desired. When operated with wall temperatures of ∼2°C, >90°C, and ∼22°C for the three stages, respectively, the vWCPC detects particles generated from a heated nichrome wire with a 50% efficiency cut-point near 1.6 nm mobility diameter. At these operating temperatures, it also detects 10–20% of large molecular ions formed from passing filtered ambient air through a bipolar ion source. Decreasing the temperature difference between the first two stages, with the first and second stages operated at 10 and 90°C, respectively, essentially eliminates the response to charger ions, and raises the 50% efficiency cut-point for the nichrome wire particles to 1.9 nm mobility diameter. The time response, as measured by rapid removal of an inlet filter, yields a characteristic time constant of 195 ms. Copyright
Aerosol Science and Technology | 2016
Howard J. Walls; David S. Ensor; Lauren A. Harvey; Jean H. Kim; Ryan T. Chartier; Susanne V. Hering; Steven R. Spielman; Gregory S. Lewis
ABSTRACT Airborne viruses represent a potentially significant health threat. However, only recently have researchers begun to characterize the size and infectivity of viral bioaerosols in the nanoscale size range. There are limitations in the generation of test viral aerosols and the ability to sample with acceptable efficiency. Reported here is use of a laminar-flow water condensation method to efficiently sample nanoscale bioaerosols to sizes well below 100 nm. We used MS2 bacteriophage in water to provide an aerosol with particles sizes from 300 nm down to 45 nm for sampling by both an all-glass impinger (4 mm; AGI-4) and the water condensation bioaerosol sampler. We demonstrated the existence of infectious viral particles below 100 nm and a higher collection efficiency by the water condensation sampler compared to the AGI-4 at nanoscale sizes. For example, the water condensation bioaerosol sampler that collected particles at 45 nm in diameter had 20 times more infective virions per collected particle compared to the AGI-4. However, when we corrected the AGI-4 data for particle size–dependent collection efficiency, the results were similar. We also used quantitative reverse transcription polymerase chain reaction, along with culturing for infectivity to determine the percent infectivity of the aerosol by particle size. Finally, we used a simple calculation to determine that a large fraction of sub-100 nm particles did not contain infectious virus because of the low titer concentration of virus in the Collison fluid.
Atmospheric Measurement Techniques Discussions | 2017
Tamara Pinterich; Steven R. Spielman; Susanne V. Hering; Jian Wang
We present a humidity-controlled fast integrated mobility spectrometer (HFIMS) for rapid particle hygroscopicity measurements. The HFIMS consists of a differential mobility analyzer (DMA), a relative humidity (RH) control unit and a water-based FIMS (WFIMS) coupled in series. The WFIMS (Pinterich et al., 2017) combines the fast integrated mobility spectrometer (Kulkarni and Wang, 2006a, b) with laminar flow water condensation methodologies (Hering and Stolzenburg, 2005; Spielman et al., 2017). Inside the WFIMS, particles of different electrical mobilities are spatially separated in an electric field, condensationally enlarged and imaged to provide 1 Hz measurements of size distribution spanning a factor of ∼ 3 in particle diameter, which is sufficient to cover the entire range of growth factor (GF) for atmospheric aerosol particles at 90 % RH. By replacing the second DMA of a traditional hygroscopicity tandem DMA (HTDMA) system with the WFIMS, the HFIMS greatly increases the speed of particle growth factor measurement. The performance of the HFIMS was evaluated using NaCl particles with well-known hygroscopic growth behavior and further through measurements of ambient aerosols. Results show that the HFIMS can reproduce, within 2 %, the literature values for hygroscopic growth of NaCl particles. NaCl deliquescence was observed between 76 and 77 % RH in agreement with the theoretical value of 76.5 % (Ming and Russell, 2001), and efflorescence relative humidity (43 %) was found to lie within the RH range of 41 to 56 % reported in the literature. Ambient data indicate that the HFIMS can measure the hygroscopic growth of five standard dry particle sizes ranging from 35 to 165 nm within less than 3 min, which makes it about 1 order of magnitude faster than traditional HTDMA systems.
Aerosol Science and Technology | 2017
Steven R. Spielman; Susanne V. Hering; Chongai Kuang; Jian Wang
ABSTRACT A water-based condensational growth channel was developed for imaging mobility-separated particles within a parallel plate separation channel of the Fast Integrated Mobility Spectrometer (FIMS). Reported are initial tests of that system, in which the alcohol condenser of the FIMS was replaced by a water-based condensational growth channel. Tests with monodispersed sodium chloride aerosol verify that the water-condensational growth maintained the laminar flow, while providing sufficient growth for particle imaging. Particle positions mapped onto particle mobility, in accordance with theoretical expectations. Particles ranging in size from 12 nm to 100 nm were counted with the same efficiency as with a butanol-based ultrafine particle counter, once inlet and line losses were taken into account. Copyright
Aerosol Science and Technology | 2017
Tamara Pinterich; Steven R. Spielman; Susanne V. Hering; Jian Wang
ABSTRACT A water-based fast integrated mobility spectrometer (WFIMS) with enhanced dynamic size range is developed. The WFIMS builds on two established technologies: the fast integrated mobility spectrometer and laminar flow water-based condensation methodology. Inside WFIMS, particles of differing electrical mobility are separated in a drift tube and subsequently enlarged through water condensation. Particle size and concentration are measured via digital imaging at a frame rate of 10 Hz. By measuring particles of different mobilities simultaneously, the WFIMS resolves particle diameters ranging from 8 to 580 nm within 1 s or less. The performance of WFIMS was characterized with differential mobility analyzer (DMA) classified (NH4)2SO2 particles with diameters ranging from 8 to 265 nm. The mean particle diameters measured by WFIMS were found to be in excellent agreement with DMA centroid diameters. Furthermore, detection efficiency of WFIMS was characterized using a condensation particle counter as a reference and is nearly 100% for particles with diameter greater than 8 nm. In general, measured and simulated WFIMS mobility resolutions are in good agreement. However, some deviations are observed at low particle mobilities, likely due to the non-idealities of the WFIMS electric field. Copyright
Aerosol Science and Technology | 2017
Howard J. Walls; Jean H. Kim; Robert Yaga; Lauren A. Harvey; Laura G. Haines; David S. Ensor; Susanne V. Hering; Steven R. Spielman; Nathan M. Kreisberg
ABSTRACT Sampling for culturable (e.g., viable) aerosolized microbes (bioaerosols) is a useful means to provide information for public health monitoring and studies. However, it is challenging to maintain microbe culturability when sampling at high flow rates (>12 L/min) and extended periods of time (≥4 h). We developed a first-generation, viable bioaerosol collection system (VBCS) utilizing temperature (T) and relative humidity (RH)–conditioned filtration at a flow rate of 25 L/min. A two-stage system of tube-in-shell Nafion™ exchange units provides cooling to ≤10°C and RH conditioning to 80–95%. Aerosol particles are collected on a polyurethane nanofiber filter providing a physical collection efficiency of >95% for sizes 0.06–10 µm. The T and RH conditions at the collection filter are maintained, despite changes to ambient conditions. The initial testing of the VBCS was done under indoor, laboratory conditions with aerosolized, vegetative E. coli. A scenario of a 30-min challenge of bioaerosol followed by continued sampling of clean air for various times was used to judge culturability maintenance under extended-term sampling. An initial loss of culturability upon collection onto the filter was observed; 23 ± 13% relative to 4-mm all-glass impinger. However once collected, 98% of culturability was maintained for an additional 4.5 h of sampling. An exponential decay in culturability was observed from 8 h to 15 h of sampling. Also, 24-h cold storage of the filters collected was studied. The VBCS is based on the use of dry filter cassettes, needs minimal maintenance, and preserves culturability of vegetative bacteria for >4 h.
NUCLEATION AND ATMOSPHERIC AEROSOLS: 19th International Conference | 2013
Arantza Eiguren-Fernandez; Gregory S. Lewis; Steven R. Spielman; Susanne V. Hering
A versatile and compact sampling system has been developed to collect sequential time-resolved, dry aerosol particles down to 6 nm in diameter. Using the same technology as in the water-based condensation particle counters this system collects and deposits dry samples of ambient fine and ultrafine particles in 1mm spots. The size of the deposition area allows reducing collection times by increasing the concentration of particles in the 50-100 μl volume of solvent used to extract the chemicals of interest.
Aerosol Science and Technology | 2018
Nathan M. Kreisberg; Steven R. Spielman; Arantzazu Eiguren-Fernandez; Susanne V. Hering; Michael J. Lawler; Danielle C. Draper; James N. Smith
Abstract A water condensation-based ion charging system has been developed to enhance both the charging efficiency and the concentration of sub-20 nm particles. This NanoCharger consists of a bipolar ion source followed by a parallel plate water-based condensation system, an embedded ion scavenger, and an aerodynamic focusing stage. Sufficient numbers of ions are transported through the system to attach to the formed droplets. An ion scavenger removes the ions immediately after the droplet formation to minimize multiple charging. A subsequent cold-walled condensation stage removes most of the water vapor, lowering the dew point to below 16 °C, while a set of focusing nozzles concentrates the droplets into ∼10% of the flow. The flow is then slightly heated to evaporate the droplets. The physical enhancement of electrical charging was evaluated in the laboratory using mobility-selected particles, and found to provide ∼40-fold enhancement over bipolar charging for 6–15 nm particles. Chemical artifacts were evaluated through thermal desorption chemical ionization mass spectrometry. Data comparing ion spectra for flow that passed through the NanoCharger to that obtained without it showed nearly equivalent ion spectra, indicating that no significant artifacts were introduced from the condensation–evaporation process. Copyright
Aerosol Science and Technology | 2018
Susanne V. Hering; Gregory S. Lewis; Steven R. Spielman; Arantzazu Eiguren-Fernandez
Abstract A self-sustaining, motion-tolerant, water-based condensation particle counter (CPC) has been designed, fabricated, and tested. Referred to as “MAGIC” for moderated aerosol growth with internal water cycling, the particle size response is similar to the 5-nm cut-point commercial CPCs. MAGIC is a laminar-flow instrument with three temperature stages: cool, warm, and cool. The middle warm-walled stage initiates the condensational growth and the final cool-walled stage maintains supersaturated conditions while recovering water vapor. By using a continuous wick throughout all three stages, the system recharges itself through a combination of water condensate from the sampled airstream and recovery of water vapor from the peak supersaturation region. A reservoir-less prototype system based on this concept was built and tested. Experiments show equal performance in any orientation, upright or inverted, and tolerance to tipping, shaking and vibrational shocks up to 5 g. Under mild ambient conditions, it provided multi-week operation without replenishing the wick. Copyright