Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven R. Woodcock is active.

Publication


Featured researches published by Steven R. Woodcock.


Journal of Biological Chemistry | 2005

Fatty Acid Transduction of Nitric Oxide Signaling: MULTIPLE NITRATED UNSATURATED FATTY ACID DERIVATIVES EXIST IN HUMAN BLOOD AND URINE AND SERVE AS ENDOGENOUS PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR LIGANDS*♦

Paul R. S. Baker; Yiming Lin; Francisco J. Schopfer; Steven R. Woodcock; Alison L. Groeger; Carlos Batthyany; S D Sweeney; Marshall H. Long; Karen E. Iles; Laura M. S. Baker; Bruce P. Branchaud; Yuqing E. Chen; Bruce A. Freeman

Mass spectrometric analysis of human plasma and urine revealed abundant nitrated derivatives of all principal unsaturated fatty acids. Nitrated palmitoleic, oleic, linoleic, linolenic, arachidonic and eicosapentaenoic acids were detected in concert with their nitrohydroxy derivatives. Two nitroalkene derivatives of the most prevalent fatty acid, oleic acid, were synthesized (9- and 10-nitro-9-cis-octadecenoic acid; OA-NO2), structurally characterized and determined to be identical to OA-NO2 found in plasma, red cells, and urine of healthy humans. These regioisomers of OA-NO2 were quantified in clinical samples using 13C isotope dilution. Plasma free and esterified OA-NO2 concentrations were 619 ± 52 and 302 ± 369 nm, respectively, and packed red blood cell free and esterified OA-NO2 was 59 ± 11 and 155 ± 65 nm. The OA-NO2 concentration of blood is ∼50% greater than that of nitrated linoleic acid, with the combined free and esterified blood levels of these two fatty acid derivatives exceeding 1 μm. OA-NO2 is a potent ligand for peroxisome proliferator activated receptors at physiological concentrations. CV-1 cells co-transfected with the luciferase gene under peroxisome proliferator-activated receptor (PPAR) response element regulation, in concert with PPARγ, PPARα, or PPARδ expression plasmids, showed dose-dependent activation of all PPARs by OA-NO2. PPARγ showed the greatest response, with significant activation at 100 nm, while PPARα and PPARδ were activated at ∼300 nm OA-NO2. OA-NO2 also induced PPAR γ-dependent adipogenesis and deoxyglucose uptake in 3T3-L1 preadipocytes at a potency exceeding nitrolinoleic acid and rivaling synthetic thiazo-lidinediones. These data reveal that nitrated fatty acids comprise a class of nitric oxide-derived, receptor-dependent, cell signaling mediators that act within physiological concentration ranges.


Nature Chemical Biology | 2010

Cyclooxygenase-2 generates anti-inflammatory mediators from omega-3 fatty acids

Alison L. Groeger; Chiara Cipollina; Marsha P. Cole; Steven R. Woodcock; Gustavo Bonacci; Tanja K. Rudolph; Volker Rudolph; Bruce A. Freeman; Francisco J. Schopfer

Electrophilic fatty acids are generated during inflammation by non-enzymatic reactions and can modulate inflammatory responses. We used a new mass spectrometry-based electrophile capture strategy to reveal the formation of electrophilic oxo-derivatives (EFOX) from the omega-3 fatty acids docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). These EFOX were generated by a cyclooxygenase-2 (COX-2)-catalyzed mechanism in activated macrophages. Modulation of COX-2 activity by aspirin increased the rate of EFOX production and their intracellular levels. Owing to their electrophilic nature, EFOX adducted to cysteine and histidine residues of proteins and activated Nrf2-dependent anti-oxidant gene expression. We confirmed the anti-inflammatory nature of DHA- and DPA-derived EFOX by showing that they can act as peroxisome proliferator-activated receptor-gamma (PPAR gamma) agonists and inhibit pro-inflammatory cytokine and nitric oxide production, all within biological concentration ranges. These data support the idea that EFOX are signaling mediators that transduce the beneficial clinical effects of omega-3 fatty acids, COX-2 and aspirin.


Journal of Biological Chemistry | 2008

Nitro-fatty acid formation and signaling

Bruce A. Freeman; Paul R. S. Baker; Francisco J. Schopfer; Steven R. Woodcock; Alessandra Napolitano; Marco d'Ischia

Enzymatic and non-enzymatic oxygenations of unsaturated fatty acids yield a broad family of autocrine and paracrine cell signaling mediators. Soon after nitric oxide (•NO) was described as a mediator of vascular relaxation, it was appreciated that this lipophilic free radical species strongly influences fatty acid oxygenation at multiple levels. For example, •NO terminates peroxyl radical-induced chain propagation reactions of lipid peroxidation at rate constants >103 faster than tocopherols (1, 2). Also, the gene expression and catalytic activity of enzymes responsible for prostaglandin, thromboxane, and leukotriene biosynthesis are regulated by •NO (3–5). Another convergence of lipid and •NO signaling is manifested in the form of nitrated unsaturated fatty acids. Fatty acid nitration is induced by •NO-derived species reacting via multiple mechanisms that share a proclivity for the homolytic addition of nitrogen dioxide (•NO2) to the double bond, yielding an array of regio- and stereoisomers (6). NO2-FAs3 display both cGMP-independent and receptor-dependent signaling actions as well as robust electrophilic reactivity, facilitating reversible adduction by nucleophilic targets (e.g. protein Cys and His residues) (7, 8). This reactivity in turn supports the post-translational modification of protein distribution and function. Both NO2-FAs and their protein or GSH adduction products are detected clinically in healthy individuals, become elevated postprandially, and are formed by oxidative inflammatory reactions (8–12). Current data indicate that NO2-FAs signal via predominantly •NO-independent mechanisms, acting via electrophilic and receptor-mediated reactions to exert adaptive and anti-inflammatory cell responses.


Cardiovascular Research | 2010

Endogenous generation and protective effects of nitro-fatty acids in a murine model of focal cardiac ischaemia and reperfusion

Volker Rudolph; Tanja K. Rudolph; Francisco J. Schopfer; Gustavo Bonacci; Steven R. Woodcock; Marsha P. Cole; Paul R. S. Baker; Ravi Ramani; Bruce A. Freeman

AIMS Nitrated fatty acids (NO(2)-FA) have been identified as endogenous anti-inflammatory signalling mediators generated by oxidative inflammatory reactions. Herein the in vivo generation of nitro-oleic acid (OA-NO(2)) and nitro-linoleic acid (LNO(2)) was measured in a murine model of myocardial ischaemia and reperfusion (I/R) and the effect of exogenous administration of OA-NO(2) on I/R injury was evaluated. METHODS AND RESULTS In C57/BL6 mice subjected to 30 min of coronary artery ligation, endogenous OA-NO(2) and LNO(2) formation was observed after 30 min of reperfusion, whereas no NO(2)-FA were detected in sham-operated mice and mice with myocardial infarction without reperfusion. Exogenous administration of 20 nmol/g body weight OA-NO(2) during the ischaemic episode induced profound protection against I/R injury with a 46% reduction in infarct size (normalized to area at risk) and a marked preservation of left ventricular function as assessed by transthoracic echocardiography, compared with vehicle-treated mice. Administration of OA-NO(2) inhibited activation of the p65 subunit of nuclear factor kappaB (NFkappaB) in I/R tissue. Experiments using the NFkappaB inhibitor pyrrolidinedithiocarbamate also support that protection lent by OA-NO(2) was in part mediated by inhibition of NFkappaB. OA-NO(2) inhibition of NFkappaB activation was accompanied by suppression of downstream intercellular adhesion molecule 1 and monocyte chemotactic protein 1 expression, neutrophil infiltration, and myocyte apoptosis. CONCLUSION This study reveals the de novo generation of fatty acid nitration products in vivo and reveals the anti-inflammatory and potential therapeutic actions of OA-NO(2) in myocardial I/R injury.


Journal of Biological Chemistry | 2007

Nitro-fatty Acid Reaction with Glutathione and Cysteine KINETIC ANALYSIS OF THIOL ALKYLATION BY A MICHAEL ADDITION REACTION

Laura M. S. Baker; Paul R. S. Baker; Franca Golin-Bisello; Francisco J. Schopfer; Mitchell P. Fink; Steven R. Woodcock; Bruce P. Branchaud; Rafael Radi; Bruce A. Freeman

Fatty acid nitration by nitric oxide-derived species yields electrophilic products that adduct protein thiols, inducing changes in protein function and distribution. Nitro-fatty acid adducts of protein and reduced glutathione (GSH) are detected in healthy human blood. Kinetic and mass spectrometric analyses reveal that nitroalkene derivatives of oleic acid (OA-NO2) and linoleic acid (LNO2) rapidly react with GSH and Cys via Michael addition reaction. Rates of OA-NO2 and LNO2 reaction with GSH, determined via stopped flow spectrophotometry, displayed second-order rate constants of 183 m-1s-1 and 355 m-1s-1, respectively, at pH 7.4 and 37 °C. These reaction rates are significantly greater than those for GSH reaction with hydrogen peroxide and non-nitrated electrophilic fatty acids including 8-iso-prostaglandin A2 and 15-deoxy-Δ12,14-prostaglandin J2. Increasing reaction pH from 7.4 to 8.9 enhanced apparent second-order rate constants for the thiol reaction with OA-NO2 and LNO2, showing dependence on the thiolate anion of GSH for reactivity. Rates of nitroalkene reaction with thiols decreased as the pKa of target thiols increased. Increasing concentrations of the detergent octyl-β-d-glucopyranoside decreased rates of nitroalkene reaction with GSH, indicating that the organization of nitro-fatty acids into micellar or membrane structures can limit Michael reactivity with more polar nucleophilic targets. In aggregate, these results reveal that the reversible adduction of thiols by nitro-fatty acids is a mechanism for reversible post-translational regulation of protein function by nitro-fatty acids.


Journal of Biological Chemistry | 2011

Electrophilic nitro-fatty acids activate NRF2 by a KEAP1 cysteine 151-independent mechanism.

Emilia Kansanen; Gustavo Bonacci; Francisco J. Schopfer; Suvi M. Kuosmanen; Kit I. Tong; Hanna Leinonen; Steven R. Woodcock; Masayuki Yamamoto; Carsten Carlberg; Seppo Ylä-Herttuala; Bruce A. Freeman; Anna-Liisa Levonen

Nitro-fatty acids (NO2-FAs) are electrophilic signaling mediators formed in vivo via nitric oxide (NO)- and nitrite (NO2−)-dependent reactions. Nitro-fatty acids modulate signaling cascades via reversible covalent post-translational modification of nucleophilic amino acids in regulatory proteins and enzymes, thus altering downstream signaling events, such as Keap1-Nrf2-antioxidant response element (ARE)-regulated gene expression. In this study, we investigate the molecular mechanisms by which 9- and 10-nitro-octadec-9-enoic acid (OA-NO2) activate the transcription factor Nrf2, focusing on the post-translational modifications of cysteines in the Nrf2 inhibitor Keap1 by nitroalkylation and its downstream responses. Of the two regioisomers, 9-nitro-octadec-9-enoic acid was a more potent ARE inducer than 10-nitro-octadec-9-enoic acid. The most OA-NO2-reactive Cys residues in Keap1 were Cys38, Cys226, Cys257, Cys273, Cys288, and Cys489. Of these, Cys273 and Cys288 accounted for ∼50% of OA-NO2 reactions in a cellular milieu. Notably, Cys151 was among the least OA-NO2-reactive of the Keap1 Cys residues, with mutation of Cys151 having no effect on net OA-NO2 reaction with Keap1 or on ARE activation. Unlike many other Nrf2-activating electrophiles, OA-NO2 enhanced rather than diminished the binding between Keap1 and the Cul3 subunit of the E3 ligase for Nrf2. OA-NO2 can therefore be categorized as a Cys151-independent Nrf2 activator, which in turn can influence the pattern of gene expression and therapeutic actions of nitroalkenes.


Journal of Biological Chemistry | 2010

Covalent Peroxisome Proliferator-activated Receptor γ Adduction by Nitro-fatty Acids SELECTIVE LIGAND ACTIVITY AND ANTI-DIABETIC SIGNALING ACTIONS

Francisco J. Schopfer; Marsha P. Cole; Alison L. Groeger; Chen Shan Chen; Nicholas K.H. Khoo; Steven R. Woodcock; Franca Golin-Bisello; U. Nkiru Motanya; Yong Li; Jifeng Zhang; Minerva T. Garcia-Barrio; Tanja K. Rudolph; Volker Rudolph; Gustavo Bonacci; Paul R. S. Baker; H. Eric Xu; Carlos Batthyany; Y. Eugene Chen; Tina M. Hallis; Bruce A. Freeman

The peroxisome proliferator-activated receptor-γ (PPARγ) binds diverse ligands to transcriptionally regulate metabolism and inflammation. Activators of PPARγ include lipids and anti-hyperglycemic drugs such as thiazolidinediones (TZDs). Recently, TZDs have raised concern after being linked with increased risk of peripheral edema, weight gain, and adverse cardiovascular events. Most reported endogenous PPARγ ligands are intermediates of lipid metabolism and oxidation that bind PPARγ with very low affinity. In contrast, nitro derivatives of unsaturated fatty acids (NO2-FA) are endogenous products of nitric oxide (•NO) and nitrite (NO2−)-mediated redox reactions that activate PPARγ at nanomolar concentrations. We report that NO2-FA act as partial agonists of PPARγ and covalently bind PPARγ at Cys-285 via Michael addition. NO2-FA show selective PPARγ modulator characteristics by inducing coregulator protein interactions, PPARγ-dependent expression of key target genes, and lipid accumulation is distinctively different from responses induced by the TZD rosiglitazone. Administration of this class of signaling mediators to ob/ob mice revealed that NO2-FA lower insulin and glucose levels without inducing adverse side effects such as the increased weight gain induced by TZDs.The peroxisome proliferator-activated receptor-gamma (PPARgamma) binds diverse ligands to transcriptionally regulate metabolism and inflammation. Activators of PPARgamma include lipids and anti-hyperglycemic drugs such as thiazolidinediones (TZDs). Recently, TZDs have raised concern after being linked with increased risk of peripheral edema, weight gain, and adverse cardiovascular events. Most reported endogenous PPARgamma ligands are intermediates of lipid metabolism and oxidation that bind PPARgamma with very low affinity. In contrast, nitro derivatives of unsaturated fatty acids (NO(2)-FA) are endogenous products of nitric oxide ((*)NO) and nitrite (NO(2)(-))-mediated redox reactions that activate PPARgamma at nanomolar concentrations. We report that NO(2)-FA act as partial agonists of PPARgamma and covalently bind PPARgamma at Cys-285 via Michael addition. NO(2)-FA show selective PPARgamma modulator characteristics by inducing coregulator protein interactions, PPARgamma-dependent expression of key target genes, and lipid accumulation is distinctively different from responses induced by the TZD rosiglitazone. Administration of this class of signaling mediators to ob/ob mice revealed that NO(2)-FA lower insulin and glucose levels without inducing adverse side effects such as the increased weight gain induced by TZDs.


Journal of Biological Chemistry | 2009

Nrf2-dependent and -independent responses to nitro-fatty acids in human endothelial cells: Identification of heat shock response as the major pathway activated by nitro-oleic acid

Emilia Kansanen; Henna-Kaisa Jyrkkänen; Oscar L. Volger; Hanna Leinonen; Annukka M. Kivelä; Sanna-Kaisa Häkkinen; Steven R. Woodcock; Francisco J. Schopfer; Anton J.G. Horrevoets; Seppo Ylä-Herttuala; Bruce A. Freeman; Anna-Liisa Levonen

Electrophilic fatty acid derivatives, including nitrolinoleic acid and nitro-oleic acid (OA-NO2), can mediate anti-inflammatory and pro-survival signaling reactions. The transcription factor Nrf2, activated by electrophilic fatty acids, suppresses redox-sensitive pro-inflammatory gene expression and protects against vascular endothelial oxidative injury. It was therefore postulated that activation of Nrf2 by OA-NO2 accounts in part for its anti-inflammatory actions, motivating the characterization of Nrf2-dependent and -independent effects of OA-NO2 on gene expression using genome-wide transcriptional profiling. Control and Nrf2-small interfering RNA-transfected human endothelial cells were treated with vehicle, oleic acid, or OA-NO2, and differential gene expression profiles were determined. Although OA-NO2 significantly induced the expression of Nrf2-dependent genes, including heme oxygenase-1 and glutamate-cysteine ligase modifier subunit, the majority of OA-NO2-regulated genes were regulated by Nrf2-independent pathways. Moreover, gene set enrichment analysis revealed that the heat shock response is the major pathway activated by OA-NO2, with robust induction of a number of heat shock genes regulated by the heat shock transcription factor. Inasmuch as the heat shock response mediates anti-inflammatory and cytoprotective actions, this mechanism is proposed to contribute to the protective cell signaling functions of nitro-fatty acids and other electrophilic fatty acid derivatives.


Journal of Biological Chemistry | 2009

Nitro-fatty Acid Metabolome: Saturation, Desaturation, β-Oxidation, and Protein Adduction

Volker Rudolph; Francisco J. Schopfer; Nicholas K.H. Khoo; Tanja K. Rudolph; Marsha P. Cole; Steven R. Woodcock; Gustavo Bonacci; Alison L. Groeger; Franca Golin-Bisello; Chen-Shan Chen; Paul R. S. Baker; Bruce A. Freeman

Nitrated derivatives of fatty acids (NO2-FA) are pluripotent cell-signaling mediators that display anti-inflammatory properties. Current understanding of NO2-FA signal transduction lacks insight into how or if NO2-FA are modified or metabolized upon formation or administration in vivo. Here the disposition and metabolism of nitro-9-cis-octadecenoic (18:1-NO2) acid was investigated in plasma and liver after intravenous injection in mice. High performance liquid chromatography-tandem mass spectrometry analysis showed that no 18:1-NO2 or metabolites were detected under basal conditions, whereas administered 18:1-NO2 is rapidly adducted to plasma thiol-containing proteins and glutathione. NO2-FA are also metabolized via β-oxidation, with high performance liquid chromatography-tandem mass spectrometry analysis of liver lipid extracts of treated mice revealing nitro-7-cis-hexadecenoic acid, nitro-5-cis-tetradecenoic acid, and nitro-3-cis-dodecenoic acid and corresponding coenzyme A derivatives of 18:1-NO2 as metabolites. Additionally, a significant proportion of 18:1-NO2 and its metabolites are converted to nitroalkane derivatives by saturation of the double bond, and to a lesser extent are desaturated to diene derivatives. There was no evidence of the formation of nitrohydroxyl or conjugated ketone derivatives in organs of interest, metabolites expected upon 18:1-NO2 hydration or nitric oxide (•NO) release. Plasma samples from treated mice had significant extents of protein-adducted 18:1-NO2 detected by exchange to added β-mercaptoethanol. This, coupled with the observation of 18:1-NO2 release from glutathione-18:1-NO2 adducts, supports that reversible and exchangeable NO2-FA-thiol adducts occur under biological conditions. After administration of [3H]18:1-NO2, 64% of net radiolabel was recovered 90 min later in plasma (0.2%), liver (18%), kidney (2%), adipose tissue (2%), muscle (31%), urine (6%), and other tissue compartments, and may include metabolites not yet identified. In aggregate, these findings show that electrophilic FA nitroalkene derivatives (a) acquire an extended half-life by undergoing reversible and exchangeable electrophilic reactions with nucleophilic targets and (b) are metabolized predominantly via saturation of the double bond and β-oxidation reactions that terminate at the site of acyl-chain nitration.


Journal of Biological Chemistry | 2012

Conjugated Linoleic Acid is a Preferential Substrate for Fatty Acid Nitration

Gustavo Bonacci; Paul R. S. Baker; Sonia R. Salvatore; Darla Shores; Nicholas K.H. Khoo; Jeffrey R. Koenitzer; Dario A. Vitturi; Steven R. Woodcock; Franca Golin-Bisello; Marsha P. Cole; Simon C. Watkins; Claudette M. St. Croix; Carlos Batthyany; Bruce A. Freeman; Francisco J. Schopfer

Background: Nitroalkene fatty acids are electrophilic cell metabolites that mediate anti-inflammatory signaling actions. Results: Conjugated linoleic acid is the preferential unsaturated fatty acid substrate for nitration reactions during oxidative inflammatory conditions and digestion. Conclusion: Nitro-fatty acid formation in vivo occurs during metabolic and inflammatory reactions and modulates cell signaling. Significance: Nitro-conjugated linoleic acid transduces signaling actions of nitric oxide, nitrite, and conjugated linoleic acid. The oxidation and nitration of unsaturated fatty acids by oxides of nitrogen yield electrophilic derivatives that can modulate protein function via post-translational protein modifications. The biological mechanisms accounting for fatty acid nitration and the specific structural characteristics of products remain to be defined. Herein, conjugated linoleic acid (CLA) is identified as the primary endogenous substrate for fatty acid nitration in vitro and in vivo, yielding up to 105 greater extent of nitration products as compared with bis-allylic linoleic acid. Multiple enzymatic and cellular mechanisms account for CLA nitration, including reactions catalyzed by mitochondria, activated macrophages, and gastric acidification. Nitroalkene derivatives of CLA and their metabolites are detected in the plasma of healthy humans and are increased in tissues undergoing episodes of ischemia reperfusion. Dietary CLA and nitrite supplementation in rodents elevates NO2-CLA levels in plasma, urine, and tissues, which in turn induces heme oxygenase-1 (HO-1) expression in the colonic epithelium. These results affirm that metabolic and inflammatory reactions yield electrophilic products that can modulate adaptive cell signaling mechanisms.

Collaboration


Dive into the Steven R. Woodcock's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marsha P. Cole

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge