Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven Sai Hang Ho is active.

Publication


Featured researches published by Steven Sai Hang Ho.


Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2007

The application of thermal methods for determining chemical composition of carbonaceous aerosols: a review.

Judith C. Chow; Jian Zhen Yu; John G. Watson; Steven Sai Hang Ho; Theresa L. Bohannan; Michael D. Hays; Kochy K. Fung

Thermal methods of various forms have been used to quantify carbonaceous materials. Thermal/optical carbon analysis provides measurements of organic and elemental carbon concentrations as well as fractions evolving at specific temperatures in ambient and source aerosols. Detection of thermally desorbed organic compounds with thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) identifies and quantifies over 100 individual organic compounds in particulate matter (PM) samples. The resulting mass spectra contain information that is consistent among, but different between, source emissions even in the absence of association with specific organic compounds. TD-GC/MS is a demonstrated alternative to solvent extraction for many organic compounds and can be applied to samples from existing networks. It is amenable to field-deployable instruments capable of measuring organic aerosol composition in near real-time. In this review, thermal stability of organic compounds is related to chemical structures, providing a basis for understanding thermochemical properties of carbonaceous aerosols. Recent advances in thermal methods applied to determine aerosol chemical compositions are summarized and their potential for uncovering aerosol chemistry are evaluated. Current limitations and future research needs of the thermal methods are included.


Journal of Chromatography A | 2008

Evaluation of an in-injection port thermal desorption-gas chromatography/mass spectrometry method for analysis of non-polar organic compounds in ambient aerosol samples

Steven Sai Hang Ho; Jian Zhen Yu; Judith C. Chow; Barbara Zielinska; John G. Watson; Elber Hoi Leung Sit; James J. Schauer

Thermal desorption coupled with gas chromatography/mass spectrometry (TD-GC/MS) is an alternative to solvent extraction (SE)-based GC/MS (SE-GC/MS) for the analysis of non-polar organic compounds in filter or impactor-collected aerosols. TD-GC/MS has no sample pretreatment and requires a small filter aliquot for detecting individual organic compounds. The performance of an in-injection port TD-GC/MS is evaluated for polycyclic aromatic hydrocarbons (PAHs), n-alkanes, iso-/anteiso-alkanes, hopanes, steranes, branched alkanes, cyclohexanes, alkenes, and phthalates in standards and ambient air samples. Replicate analysis for 132 organic compounds showed relative standard deviations <10%, with the majority <5%. Accuracy for 15 PAHs, determined with NIST standard reference material (SRM) 1649a urban dust, was within +/-5% of the certified values. TD-GC/MS and SE-GC/MS method comparisons for 14 Hong Kong ambient samples agreed within 11% for 106 non-polar compounds. For 19 Tong Liang, China samples, agreement was within 13% for 23 PAHs.


Journal of Hazardous Materials | 2011

Characteristics and health impacts of VOCs and carbonyls associated with residential cooking activities in Hong Kong.

Yu Huang; Steven Sai Hang Ho; Kin Fai Ho; Shun Cheng Lee; Jian Zhen Yu; Peter K.K. Louie

Cooking emission samples collected in two residential kitchens were compared where towngas (denoted as dwelling A) and liquefied petroleum gas (LPG) (denoted as dwelling B) were used as cooking fuels. A total of 50 different volatile organic compounds (VOCs) were quantified during the 90 min cooking periods. None of any carcinogenic compounds like formaldehyde, acetaldehyde or benzene are detected in the raw fuels, confirming that those are almost entirely derived due to cooking activity alone. Alkenes accounted for approximately 53% of the total measured VOCs collected at dwelling A, while alkanes contributed approximately 95% of the VOCs at dwelling B during the cooking periods. The concentration of aromatic hydrocarbons such as benzene and toluene also increased during the cooking periods. The total amount of carbonyls emitted from the cooking processes at dwelling A (2708 μg) is three times higher than that at dwelling B (793 μg). Acetaldehyde was the most abundant carbonyl at the dwelling A but its emission was insignificant at the dwelling B. Carcinogenic risks on chronic exposure to formaldehyde, acetaldehyde, and benzene for housewives and domestic helpers were evaluated. Formaldehyde accounts for 68% and close to 100% of lifetime cancer risks at dwelling A and B, respectively.


Journal of The Air & Waste Management Association | 2008

Advances in integrated and continuous measurements for particle mass and chemical composition.

Judith C. Chow; Prakash Doraiswamy; John G. Watson; L.-W. Antony Chen; Steven Sai Hang Ho; David A. Sodeman

Abstract Recent improvements in integrated and continuous PM2.5 mass and chemical measurements from the Supersite program and related studies in the past decade are summarized. Analytical capabilities of the measurement methods, including accuracy, precision, interferences, minimum detectable levels, comparability, and data completeness are documented. Upstream denuders followed by filter packs in integrated samplers allow an estimation of sampling artifacts. Efforts are needed to: (1) address positive and negative artifacts for organic carbon (OC), and (2) develop carbon standards to better separate organic versus elemental carbon (EC) under different temperature settings and analysis atmospheres. Advances in thermal desorption followed by gas chromatography/mass spectrometry (GC/MS) provide organic speciation of approximately 130 nonpolar compounds (e.g., n-alkanes, alkenes, hopanes, steranes, and polycyclic aromatic hydrocarbons [PAHs]) using small portions of filters from existing integrated samples. Speciation of water-soluble OC (WSOC) using ion chromatography (IC)-based instruments can replace labor-intensive solvent extraction for many compounds used as source markers. Thermal gas-based continuous nitrate and sulfate measurements underestimate filter ions by 10–50% and require calibration against on-site filter-based measurements. IC-based instruments provide multiple ions and report comparable (±10%) results to filter-based measurements. Maintaining a greater than 80% data capture rate in continuous instruments is labor intensive and requires experienced operators. Several instruments quantify black carbon (BC) by optical or photoacoustic methods, or EC by thermal methods. A few instruments provide real-time OC, EC, and organic speciation. BC and EC concentrations from continuous instruments are highly correlated but the concentrations differ by a factor of two or more. Site- and season-specific mass absorption efficiencies are needed to convert light absorption to BC. Particle mass spectrometers, although semiquantitative, provide much information on particle size and composition related to formation, growth, and characteristics over short averaging times. Efforts are made to quantify mass by collocating with other particle sizing instruments. Common parameters should be identified and consistent approaches are needed to establish comparability among measurements.


Journal of The Air & Waste Management Association | 2006

Carbonyl Emissions from Commercial Cooking Sources in Hong Kong

Steven Sai Hang Ho; Jian Zhen Yu; Kam Wah Chu; Lam-Lung Yeung

Abstract Cooking fumes are an important carbonyl emission source, especially in a highly urbanized city, such as Hong Kong. Cooking exhaust from 15 commercial kitchens of a variety of cooking styles was sampled and analyzed for a suite of 13 carbonyl compounds. Carbonyl compositions were varied among the different cooking styles. Formal dehyde was generally the most abundant carbonyl, and its contribution to the total carbonyl amount on a molar basis ranged from 12 to 60%. Acrolein was also found to be an abundant carbonyl in the cooking exhaust. The highest contribution by acrolein to the total carbonyls was found to be 30% in the exhaust of a western-style steak restaurant. Long-chain saturated carbonyls, that is, heptanal, octanal, and nonanal, accounted for a signifi-cant fraction (>40%) of the total carbonyls in kitchens that always used heated cooking oils. Two dicarbonyls, glyoxal and methylglyoxal, had a various presence in the cooking emissions, ranging from negligible to 10%. The presence of benzaldehyde and tolualdehyde was mostly negligible in the sampled kitchen exhaust. Annual emission rates of both individual carbonyls and total carbon-yls were estimated for various types of commercial kitchens. Local-style fast-food shops contributed the highest total carbonyl emissions per year mainly because of the large number of this kind of restaurant in Hong Kong. The citywide annual emission rates of the three most toxic carbonyls, formaldehyde, acetaldehyde, and acrolein, were estimated assuming that the limited number of sampled restaurants were representative of the average restaurants. Such estimates of carbonyl emission rates were comparable to the estimated carbonyl emissions from vehicular sources, suggesting the importance of commercial cooking as a source for carbonyls in Hong Kong.


Molecules | 2016

Removal of Indoor Volatile Organic Compounds via Photocatalytic Oxidation: A Short Review and Prospect

Yu Huang; Steven Sai Hang Ho; Yanfeng Lu; Ruiyuan Niu; Lifeng Xu; Junji Cao; S.C. Lee

Volatile organic compounds (VOCs) are ubiquitous in indoor environments. Inhalation of VOCs can cause irritation, difficulty breathing, and nausea, and damage the central nervous system as well as other organs. Formaldehyde is a particularly important VOC as it is even a carcinogen. Removal of VOCs is thus critical to control indoor air quality (IAQ). Photocatalytic oxidation has demonstrated feasibility to remove toxic VOCs and formaldehyde from indoor environments. The technique is highly-chemical stable, inexpensive, non-toxic, and capable of removing a wide variety of organics under light irradiation. In this paper, we review and summarize the traditional air cleaning methods and current photocatalytic oxidation approaches in both of VOCs and formaldehyde degradation in indoor environments. Influencing factors such as temperature, relative humidity, deactivation and reactivations of the photocatalyst are discussed. Aspects of the application of the photocatalytic technique to improve the IAQ are suggested.


Journal of Environmental Monitoring | 2002

Concentrations of formaldehyde and other carbonyls in environments affected by incense burning.

Steven Sai Hang Ho; Jian Zhen Yu

Burning incense to pay homage to deities is common in Chinese homes and temples. Air samples were collected and analyzed for carbonyls from a home and a temple in Hong Kong where incense burning occurs on a daily basis. Carbonyls in the air were trapped on a solid sorbent coated with O-(2,3,4,5,6-pentafluorobenzyl)-hydroxylamine, followed by thermal desorption and subsequent GC/MS analysis. The carbonyls identified include formaldehyde, acetaldehyde, acrolein, 2-furfural, benzaldehyde, glyoxal, and methylglyoxal. The levels of the above carbonyls correlate with the intensity of the incense-burning activities. The total mixing ratios of the carbonyls in the temple exceed those in the ambient air outside the temple by 11-23 times. Formaldehyde is the most abundant species, contributing to approximately 55% of the total carbonyl mixing ratios in both the temple and the home environments during incense burning. The mixing ratio of formaldehyde ranges from 108 to 346 ppbv in the temple and averages 103 ppbv in the home during incense burning. These values exceed the World Health Organization (WHO) air quality guideline of 100 microg m(-3) (88 ppbv) for formaldehyde. The highest formaldehyde level in the temple exceeds the WHO guideline by 3 times at peak incense burning hours. The mixing ratio of acrolein in the temple ranges from 20 to 99 ppbv, approaching or exceeding the WHO air quality guideline of 50 microg m(-3) (22 ppbv) for acrolein. Our measurements indicate that incense burning significantly elevates the concentrations of a number of carbonyls, most notably formaldehyde and acrolein, in the surrounding environments. This study provides preliminary insights on indoor air quality problems created by incense burning.


Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2006

Exposure to PM2.5 and PAHs from the Tong Liang, China Epidemiological Study

Judith C. Chow; John G. Watson; L.-W. A. Chen; Steven Sai Hang Ho; Darko Koracin; Barbara Zielinska; Deliang Tang; Frederica P. Perera; Junji Cao; S.C. Lee

Chemically speciated PM2.5 and particle-bound polycyclic aromatic hydrocarbon (PAH) measurements were made at three sites near urban Tong Liang, Chongqing, a Chinese inland city where coal combustion is used for electricity generation and residential purposes outside of the central city. Ambient sampling was based on 72-hr averages between 3/2/2002 and 2/26/2003. Elevated PM2.5 and PAH concentrations were observed at all three sites, with the highest concentrations found in winter and the lowest in summer. This reflects a coupling effect of source variability and meteorological conditions. The PM2.5 mass estimated from sulfate, nitrate, ammonium, organics, elemental carbon, crustal material, and salt corresponded with the annual average gravimetric mass within ±10%. Carbonaceous aerosol was the dominant species, while positive correlations between organic carbon and trace elements (e.g., As, Se, Br, Pb, and Zn) were consistent with coal-burning and motor vehicle contributions. Ambient particle-bound PAHs of molecular weight 168–266 were enriched by 1.5 to 3.5 times during the coal-fired power plant operational period. However, further investigation is needed to determine the relative contribution from residential and utility coal combustion and vehicular activities.


Journal of The Air & Waste Management Association | 2014

Characterization and seasonal variations of levoglucosan in fine particulate matter in Xi’an, China

Ting Zhang; Junji Cao; Judith C. Chow; Zhenxing Shen; Kin Fai Ho; Steven Sai Hang Ho; Suixin Liu; Yongming Han; John G. Watson; Gehui Wang; Rujin Huang

PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) samples (n = 58) collected every sixth day in Xi’an, China, from 5 July 2008 to 27 June 2009 are analyzed for levoglucosan (1,6-anhydro-β-d-glucopyranose) to evaluate the impacts of biomass combustion on ambient concentrations. Twenty-four-hour levoglucosan concentrations displayed clear summer minima and winter maxima that ranged from 46 to 1889 ng m−3, with an average of 428 ± 399 ng m−3. Besides agricultural burning, biomass/biofuel combustion for household heating with straws and branches appears to be of regional importance during the heating season in northwestern China. Good correlations (0.70 < R < 0.91) were found between levoglucosan relative to water-soluble K+, Cl−, organic carbon (OC), elemental carbon (EC), and glyoxal. The highest levoglucosan/OC ratio of 2.3% was found in winter, followed by autumn (1.5%). Biomass burning contributed to 5.1–43.8% of OC (with an average of 17.6 ± 8.4%). Implications: PM2.5 levoglucosan concentrations and the correlation between levoglucosan relative to other compounds during four seasons in Xi’an showed that the influence of biomass burning is maximum during the residential heating season (winter), although some important influences may be detected in spring (field preparation burnings) and autumn (corn stalks and wheat straw burning, fallen dead leaves burning) at Xi’an and surrounding areas. Household heating with biomass during winter was quite widespread in Guanzhong Plain. Therefore, the control of biomass/biofuel combustion could be an effective method to reduce pollutant emission on a regional scale.


Science of The Total Environment | 2016

Characterization of PM2.5 in Guangzhou, China: uses of organic markers for supporting source apportionment.

Jingzhi Wang; Steven Sai Hang Ho; Shexia Ma; Junji Cao; Wenting Dai; Suixin Liu; Zhenxing Shen; Rujin Huang; Gehui Wang; Yongming Han

Organic carbon (OC), elemental carbon (EC), and non-polar organic compounds including n-alkanes (n-C14-n-C40), polycyclic aromatic hydrocarbons (PAHs), phthalate esters (PAEs) and hopanes were quantified in fine particulate (PM2.5), which were collected in urban area of Guangzhou, China in winter and summer in 2012/2013. The pollutants levels were well comparable with the data obtained in previous studies in Pearl River Delta (PRD) region but much lower than most northern Chinese megacities. The contribution of EC to PM2.5 and OC/EC ratio suggest that the pollution sources were relatively consistent in GZ between the two seasons. Benzo[a]pyrene (BaP) was the most abundant PAHs, which were 4.9 and 1.0ng/m(3) on average, accounting for 10.7% and 9.1% to the total quantified PAHs in winter and summer, respectively. The total concentrations of PAEs ranged from 289.1 to 2435ng/m(3) and from 102.4 to 1437ng/m(3), respectively, in winter and summer. Di-n-butyl phthalate (DBP) was the most dominant PAEs. The ambient levels of PAEs could be partly attributed to the widespread uses of the household products, municipal garbage compressing, sewage, and external painting material on the building. Source apportionment for OC with chemical mass balance (CMB) model demonstrated coal combustion, vehicle emission, cooking, and secondary organic compounds (SOC) formation were the four major pollution sources. Both of the indices of n-alkanes and diagnostic PAHs ratios support that anthropogenic sources such as vehicle emission and coal combustion were the significant pollution sources with some extents from epicuticular waxes by terrestrial plants. The ratio of hopanes to EC proved the influences from vehicle emission, and displayed a certain degree of the air aging in the Guangzhou ambient air.

Collaboration


Dive into the Steven Sai Hang Ho's collaboration.

Top Co-Authors

Avatar

Junji Cao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Kin Fai Ho

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Yu Huang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

John G. Watson

Desert Research Institute

View shared research outputs
Top Co-Authors

Avatar

Judith C. Chow

Desert Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jian Zhen Yu

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

S.C. Lee

Hong Kong Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Wenting Dai

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shun Cheng Lee

Hong Kong Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Suixin Liu

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge