Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven T. J. Droge is active.

Publication


Featured researches published by Steven T. J. Droge.


Analytical Chemistry | 2011

Polyparameter Linear Free Energy Models for Polyacrylate Fiber—Water Partition Coefficients to Evaluate the Efficiency of Solid-Phase Microextraction

Satoshi Endo; Steven T. J. Droge; Kai-Uwe Goss

The fiber-water partition coefficient, K(fw), is decisive for performance of solid-phase microextraction (SPME) techniques in organic chemical analyses. In this study, polyacrylate (PA)-coated fiber was evaluated for its K(fw) values toward diverse neutral organic compounds. Literature K(fw) data were thoroughly evaluated, and additional K(fw) values for 69 compounds were measured in phosphate-buffered saline (PBS) solution at 37 °C. These K(fw) data, spanning over 6 orders of magnitude, were used to construct polyparameter linear free energy relationship (PP-LFER) models. The PP-LFER models fit well to the data with a standard deviation of 0.15-0.23 log units. Additional experiments indicated that the differences in temperature (25 vs 37 °C), electrolyte concentrations (pure water vs PBS), and conditioning methods (heat vs methanol) had only minor influences (<0.3 log units) on K(fw). Using the established PP-LFERs, the SPME extraction efficiency of PA coating toward compounds of differing polarity was evaluated in comparison to poly(dimethylsiloxane) (PDMS) coating. PA exhibited higher extraction capacities for H-bond donor compounds (e.g., phenols, anilines, amides, and many drugs and pesticides) with the estimated K(fw) values being 1-4 log units higher than those of PDMS. Also, PA was shown to be more efficient than PDMS for hydrophobic aromatic compounds.


Environmental Science & Technology | 2012

Effect of Sodium and Calcium Cations on the Ion-Exchange Affinity of Organic Cations for Soil Organic Matter

Steven T. J. Droge; Kai-Uwe Goss

Sorption of organic cations to soil organic matter was studied using dynamic column experiments with different compositions of electrolytes in aqueous eluents. The sorption affinity of the tested variety of charged compounds, including primary, secondary, and tertiary amines and quaternary ammonium compounds, all showed the same response to different medium compositions. The sorption affinity to Pahokee peat (i) strongly decreased with increasing electrolyte concentration, up to a factor 250 due to tested electrolyte compositions alone, (ii) was higher in NaCl solutions than in CaCl(2) solutions of similar ionic strength, and (iii) was more sensitive to a decrease in NaCl than to a decrease in CaCl(2), though the selectivity coefficients were not significantly different. For a weak base that was tested in eluent pH either above or below its pK(a), we demonstrated that the sorption affinity of (iv) the neutral base was hardly affected by different electrolyte compositions, comparable to a neutral reference compound, (v) the protonated weak base was strongly affected by different electrolyte compositions, and (vi) the protonated base was in the same range, or stronger, compared to the neutral base. Mass action law equations for ion-exchange reactions predicted similar trends in a qualitative but not in a quantitative way. More complex models are required to fully account for the contributions of ionic interactions to the sorption of organic cations. These results imply that risk assessment models for organic bases should take ion-exchange processes into account when estimating soil sorption coefficients and bioavailability.


Environmental Science & Technology | 2013

Development and Evaluation of a New Sorption Model for Organic Cations in Soil: Contributions from Organic Matter and Clay Minerals

Steven T. J. Droge; Kai-Uwe Goss

This study evaluates a newly proposed cation-exchange model that defines the sorption of organic cations to soil as a summed contribution of sorption to organic matter (OM) and sorption to phyllosilicate clay minerals. Sorption to OM is normalized to the fraction organic carbon (fOC), and sorption to clay is normalized to the estimated cation-exchange capacity attributed to clay minerals (CECCLAY). Sorption affinity is specified to a fixed medium composition, with correction factors for other electrolyte concentrations. The model applies measured sorption coefficients to one reference OM material and one clay mineral. If measured values are absent, then empirical relationships are available on the basis of molecular volume and amine type in combination with corrective increments for specific polar moieties. The model is tested using new sorption data generated at pH 6 for two Eurosoils, one enriched in clay and the other, OM, using 29 strong bases (pKa > 8). Using experimental data on reference materials for all tested compounds, model predictions for the two soils differed on average by only -0.1 ± 0.4 log units from measured sorption affinities. Within the chemical applicability domain, the model can also be applied successfully to various reported soil sorption data for organic cations. Particularly for clayish soils, the model shows that sorption of organic cations to clay minerals accounts for more than 90% of the overall affinity.


Environmental Science & Technology | 2013

Sorption of organic cations to phyllosilicate clay minerals: CEC-normalization, salt dependency, and the role of electrostatic and hydrophobic effects.

Steven T. J. Droge; Kai-Uwe Goss

Sorption to the phyllosilicate clay minerals Illite, kaolinite, and bentonite has been studied for a wide variety of organic cations using a flow-through method with fully aqueous medium as the eluent. Linear isotherms were observed at concentrations below 10% of the cation-exchange capacity (CEC) for Illite and kaolinite and below 1 mmol/kg (<1% CEC) for bentonite. Sorption to clays was strongly influenced by the electrolyte composition of the eluent but with a consistent trend for a diverse set of compounds on all clays, thus allowing for empirical correction factors. When sorption affinities for a given compound to a given clay are normalized to the CEC of the clay, the differences in sorption affinities between clays are reduced to less than 0.5 log units for most compounds. Although CEC-normalized sorption of quaternary ammonium compounds to clay was up to 10-fold higher than CEC-normalized sorption to soil organic matter, CEC-normalized sorption for most compounds was comparable between clays and soil organic matter. The clay fraction is thus a potentially relevant sorption phase for organic cations in many soils. The sorption data for organic cations to clay showed several regular trends with molecular structure but also showed quite a few systematic effects that we cannot explain. A model on the basis of the molecular size and charge density at the ionized nitrogen is used here as a tool to obtain benchmark values that elucidate the effect of specific polar moieties on the sorption affinity.


Water Research | 2012

Removal of charged micropollutants from water by ion-exchange polymers - effects of competing electrolytes

Patrick S. Bäuerlein; Thomas L. ter Laak; Roberta Hofman-Caris; Pim de Voogt; Steven T. J. Droge

A wide variety of environmental compounds of concern, e.g. pharmaceuticals or illicit drugs, are acids or bases that may predominantly be present as charged species in drinking water sources. These charged micropollutants may prove difficult to remove by currently used water treatment steps (e.g. UV/H(2)O(2), activated carbon (AC) or membranes). We studied the sorption affinity of some ionic organic compounds to both AC and different charged polymeric materials. Ion-exchange polymers may be effective as additional extraction phases in water treatment, because sorption of all charged compounds to oppositely charged polymers was stronger than to AC, especially for the double-charged cation metformin. Tested below 1% of the polymer ion-exchange capacity, the sorption affinity of charged micropollutants is nonlinear and depends on the composition of the aqueous medium. Whereas oppositely charged electrolytes do not impact sorption of organic ions, equally charged electrolytes do influence sorption indicating ion-exchange (IE) to be the main sorption mechanism. For the tested polymers, a tenfold increased salt concentration lowered the IE-sorption affinity by a factor two. Different electrolytes affect IE with organic ions in a similar way as inorganic ions on IE-resins, and no clear differences in this trend were observed between the sulphonated and the carboxylated cation-exchanger. Sorption of organic cations is five fold less in Ca(2+) solutions compared to similar concentrations of Na(+), while that of anionic compounds is three fold weaker in SO(4)(2-) solutions compared to equal concentrations of Cl(-).


Environmental Science & Technology | 2013

Ion-exchange affinity of organic cations to natural organic matter: influence of amine type and nonionic interactions at two different pHs.

Steven T. J. Droge; Kai-Uwe Goss

Sorption to standard soil organic matter (SOM) has been studied for a wide variety of organic cations using a flow through method with fully aqueous medium as eluent. SOM sorption for weak bases (pK(a) 4.5-7) was stronger at pH 4.5 than at pH 7, indicating that the ion-exchange affinity of the cationic species to SOM was higher than the bulk partition coefficient of corresponding neutral species to SOM. In the range of pH 4.5-7, the effect of pH on the sorption coefficients for strong bases with pK(a) > 7 was small, within 0.3 log units. For cations with the molecular formula C(x)H(y)N, sorption was accurately predicted by a model accounting for size (increase with alkyl chain length) and type of charged group (1° amine >4° ammonium of equal size). In addition to the C(x)H(y)N-model, several empirical correction factors were derived from the data for organic cations with polar functional groups. Models based on K(OW) or pK(a) fail to explain differences in sorption affinity of the ionic species. Our data on ion-exchange affinities for 80 organic cations show many examples where specific chemical moieties, for example, CH(2)-units, aromatic rings or hydroxyl groups, contribute differently to the sorption coefficient as compared to bulk partitioning data of neutral compounds. Other sorption models that were evaluated to explain variation between compounds suffered from outliers of more than one log unit and did not reduce relative log mean standard errors below 0.5. A wider range of sorption coefficients and more sorption data in general are required to improve modeling efforts further.


Environmental Toxicology and Chemistry | 2006

Chronic toxicity of polycyclic aromatic compounds to the springtail Folsomia candida and the enchytraeid Enchytraeus crypticus

Steven T. J. Droge; Miriam Leon Paumen; E.A.J. Bleeker; M.H.S. Kraak; Cornelis A.M. van Gestel

An urgent need exists for incorporating heterocyclic compounds and (bio)transformation products in ecotoxicological test schemes and risk assessment of polycyclic aromatic compounds (PACs). The aim of the present study therefore was to determine the chronic effects of (heterocyclic) PACs on two terrestrial invertebrates, the springtail Folsomia candida and the enchytraeid Enchytraeus crypticus. The effects of 11 PACs were determined in chronic experiments using reproduction and survival as endpoints. The results demonstrated that as far as narcosis-induced mortality is concerned, effects of both homocyclic and heterocyclic PACs are well described by the relationship between estimated pore-water 50% lethal concentrations and log Kow. In contrast, specific effects on reproduction varied between species and between compounds as closely related as isomers, showing up as deviations from the relationship between pore-water 50% effect concentrations and log Kow. These unpredictable specific effects on reproduction force one to test the toxicity of these PACs to populations of soil invertebrates to obtain reliable effect concentrations for use in risk assessment of PACs.


Environmental Toxicology and Chemistry | 2014

Acute toxicity of the cationic surfactant C12-benzalkonium in different bioassays: How test design affects bioavailability and effect concentrations

Yi Chen; Marc Geurts; Sascha B. Sjollema; Nynke I. Kramer; Joop L. M. Hermens; Steven T. J. Droge

Using an ion-exchange-based solid-phase microextraction (SPME) method, the freely dissolved concentrations of C12-benzalkonium were measured in different toxicity assays, including 1) immobilization of Daphnia magna in the presence or absence of dissolved humic acid; 2) mortality of Lumbriculus variegatus in the presence or absence of a suspension of Organisation for Economic Co-Operation and Development (OECD) sediment; 3) photosystem II inhibition of green algae Chlorella vulgaris; and 4) viability of in vitro rainbow trout gill cell line (RTgill-W1) in the presence or absence of serum proteins. Furthermore, the loss from chemical adsorption to the different test vessels used in these tests was also determined. The C12-benzalkonium sorption isotherms to the different sorbent phases were established as well. Our results show that the freely dissolved concentration is a better indicator of the actual exposure concentration than the nominal or total concentration in most test assays. Daphnia was the most sensitive species to C12-benzalkonium. The acute Daphnia and Lumbriculus tests both showed no enhanced toxicity from possible ingestion of sorbed C12-benzalkonium in comparison with water-only exposure, which is in accordance with the equilibrium partitioning theory. Moreover, the present study demonstrates that commonly used sorbent phases can strongly affect bioavailability and observed effect concentrations for C12-benzalkonium. Even stronger effects of decreased actual exposure concentrations resulting from sorption to test vessels, cells, and sorbent phases can be expected for more hydrophobic cationic surfactants.


Journal of Chromatography A | 2009

Freely dissolved concentrations of anionic surfactants in seawater solutions: Optimization of the non-depletive solid-phase microextraction method and application to linear alkylbenzene sulfonates

Ángeles Rico-Rico; Steven T. J. Droge; David Widmer; Joop L. M. Hermens

A solid-phase microextraction method (SPME) has been optimized for the analysis of freely dissolved anionic surfactants, namely linear alkylbenzene sulfonates (LAS), in seawater. An effect of the thermal conditioning treatment on the polyacrylate fiber coating was demonstrated for both uptake kinetics and sorption isotherm linearity. Thermal conditioning at 120 degrees C yielded linear sorption isotherms and reproducible SPME measurements for several individual LAS compounds, with detection limits at the low microgram per liter range. Sorption of LAS to the conditioned SPME fiber was independent of LAS co-solutes in mixtures. The method has been applied to study the precipitation of LAS in seawater, and solubility data for a wide range of individual LAS constituents is presented for the first time. Hence, the developed SPME method for the anionic LAS has shown to be a useful tool in complex matrices. The advantage of the SPME analyses in complex matrices is, besides its simplicity, that it also leads to clean extracts for chromatographic analyses.


Journal of Chromatography A | 2012

Analyzing freely dissolved concentrations of cationic surfactant utilizing ion-exchange capability of polyacrylate coated solid-phase microextraction fibers

Yi Chen; Steven T. J. Droge; Joop L. M. Hermens

A 7-μm polyacrylate (PA) coated fiber was successfully employed to determine freely dissolved concentrations of cationic surfactants by solid-phase microextraction (SPME) and utilizing the capability of the PA-coating to sorb organic cations via ion-exchange at carboxylic groups. Measured fiber-water partitioning coefficients (K(fw)) were constant below a fiber loading of 2mmol per liter polyacrylate, allowing for simple and accurate analysis in a concentration range that is relevant from a risk assessment point of view. Ion-exchange was confirmed to be the main sorption mechanism because of a decreasing K(fw) with either higher CaCl(2) concentrations or lower pH, and maximum fiber uptake at the polyacrylate cation-exchange capacity (CEC, at 30mmol/L PA). Fiber-water sorption isotherms were established in various aqueous media in toxicological relevant concentrations. The developed SPME method has a high potential for application in ecotoxicological studies, as demonstrated in sorption studies with humic acid in different electrolyte solutions at aqueous concentrations down to the sub nM range. Cationic surfactant sorption affinities for humic acid also depend on medium composition but are orders of magnitude higher than to the PA fiber on a sorbent weight basis.

Collaboration


Dive into the Steven T. J. Droge's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kai-Uwe Goss

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

M.H.S. Kraak

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ingrid J. Bosman

Netherlands Forensic Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satoshi Endo

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Researchain Logo
Decentralizing Knowledge