Steven T. Lund
University of British Columbia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Steven T. Lund.
BMC Plant Biology | 2006
Karen E. Reid; Niclas Olsson; James Schlosser; Fred Y. Peng; Steven T. Lund
BackgroundAccuracy in quantitative real-time RT-PCR is dependent on high quality RNA, consistent cDNA synthesis, and validated stable reference genes for data normalization. Reference genes used for normalization impact the results generated from expression studies and, hence, should be evaluated prior to use across samples and treatments. Few statistically validated reference genes have been reported in grapevine. Moreover, success in isolating high quality RNA from grapevine tissues is typically limiting due to low pH, and high polyphenolic and polysaccharide contents.ResultsWe describe optimization of an RNA isolation procedure that compensates for the low pH found in grape berries and improves the ability of the RNA to precipitate. This procedure was tested on pericarp and seed developmental series, as well as steady-state leaf, root, and flower tissues. Additionally, the expression stability of actin, AP47 (clathrin-associated protein), cyclophilin, EF1-α (elongation factor 1-α), GAPDH (glyceraldehyde 3-phosphate dehydrogenase), MDH (malate dehydrogenase), PP2A (protein phosphatase), SAND, TIP41, α-tubulin, β-tubulin, UBC (ubiquitin conjugating enzyme), UBQ-L40 (ubiquitin L40) and UBQ10 (polyubiquitin) were evaluated on Vitis vinifera cv. Cabernet Sauvignon pericarp using three different statistical approaches. Although several of the genes proved to be relatively stable, no single gene outperformed all other genes in each of the three evaluation methods tested. Furthermore, the effect of using one reference gene versus normalizing to the geometric mean of several genes is presented for the expression of an aquaporin and a sucrose transporter over a developmental series.ConclusionIn order to quantify relative transcript abundances accurately using real-time RT-PCR, we recommend that combinations of several genes be used for normalization in grape berry development studies. Our data support GAPDH, actin, EF1-α and SAND as the most relevant reference genes for this purpose.
BMC Plant Biology | 2010
Diane M. Martin; Sébastien Aubourg; Marina Schouwey; Laurent Daviet; Michel Schalk; Omid Toub; Steven T. Lund; Jörg Bohlmann
BackgroundTerpenoids are among the most important constituents of grape flavour and wine bouquet, and serve as useful metabolite markers in viticulture and enology. Based on the initial 8-fold sequencing of a nearly homozygous Pinot noir inbred line, 89 putative terpenoid synthase genes (VvTPS) were predicted by in silico analysis of the grapevine (Vitis vinifera) genome assembly [1]. The finding of this very large VvTPS family, combined with the importance of terpenoid metabolism for the organoleptic properties of grapevine berries and finished wines, prompted a detailed examination of this gene family at the genomic level as well as an investigation into VvTPS biochemical functions.ResultsWe present findings from the analysis of the up-dated 12-fold sequencing and assembly of the grapevine genome that place the number of predicted VvTPS genes at 69 putatively functional VvTPS, 20 partial VvTPS, and 63 VvTPS probable pseudogenes. Gene discovery and annotation included information about gene architecture and chromosomal location. A dense cluster of 45 VvTPS is localized on chromosome 18. Extensive FLcDNA cloning, gene synthesis, and protein expression enabled functional characterization of 39 VvTPS; this is the largest number of functionally characterized TPS for any species reported to date. Of these enzymes, 23 have unique functions and/or phylogenetic locations within the plant TPS gene family. Phylogenetic analyses of the TPS gene family showed that while most VvTPS form species-specific gene clusters, there are several examples of gene orthology with TPS of other plant species, representing perhaps more ancient VvTPS, which have maintained functions independent of speciation.ConclusionsThe highly expanded VvTPS gene family underpins the prominence of terpenoid metabolism in grapevine. We provide a detailed experimental functional annotation of 39 members of this important gene family in grapevine and comprehensive information about gene structure and phylogeny for the entire currently known VvTPS gene family.
Plant Molecular Biology | 2008
Steven T. Lund; Fred Y. Peng; Tarun Nayar; Karen E. Reid; James Schlosser
Asynchronous ripening of individual grape berries within clusters can lead to inconsistent organoleptic characteristics for wine making. Ripening initiation in grape berries is non-climacteric and not well understood at the molecular level. Evidence is lacking for a single master switch controlling this process, such as the established role for ethylene in climacteric fruit ripening. We used Affymetrix microarray analyses of 32 individual Vitis vinifera cv. Cabernet Sauvignon berries sampled from two clusters at 50% ripening initiation. By delineating four developmental stages of ripening initiation, we demonstrate that pigmentation is a statistically significant indicator of transcriptional state during ripening initiation. We report on clustered gene expression patterns which were mined for genes annotated with signal transduction functions in order to advance regulatory network modeling of ripening initiation in grape berries. Abscisic acid has previously been demonstrated to be an important signaling component regulating ripening initiation in grapevine. We demonstrate via real-time RT-PCR analyses that up-regulation of a 9-cis-epoxycarotenoid gene family member, VvNCED2, in grape seed and pericarp and a putative ortholog to a reported abscisic acid receptor, VvGCR2, are correlated with ripening initiation. Our results suggest a role for these genes in abscisic acid signaling during ripening initiation.
Protoplasma | 2008
James Schlosser; N. Olsson; M. Weis; Karen E. Reid; Fred Y. Peng; Steven T. Lund; P. Bowen
Summary.Expression profiles of genes involved in cell wall metabolism and water transport were compared with changes in grape (Vitis vinifera L.) berry growth, basic chemical composition, and the shape, size, and wall thickness of cells within tissues of the berry pericarp. Expression of cell wall-modifying and aquaporin genes in berry pericarp tissues generally followed a bimodal expression profile with high levels of expression coinciding with the two periods of rapid berry growth, stages I and III, and low levels of expression corresponding to the slow-growth period, stage II. Cellular expansion was observed throughout all tissues during stage I, and only mesocarp cellular expansion was observed during stage III. Expansion of only exocarp cells was evident during transition between stages II and III. Cell wall-modifying and aquaporin gene expression profiles followed similar trends in exocarp and mesocarp tissues throughout berry development, with the exception of the up-regulation of pectin methylesterase, pectate lyase, two aquaporin genes (AQ1 and AQ2), and two expansin genes (EXP3 and EXPL) during stage II, which was delayed in the exocarp tissue compared with mesocarp tissue. Exocarp endo-(1→3)-β-glucanase and expansin-like gene expression was concurrent with increases in epidermal and hypodermal cell wall thickness. These results indicate a potential role of the grape berry skin in modulating grape berry growth.
Planta | 2012
Diane M. Martin; Angela Chiang; Steven T. Lund; Jörg Bohlmann
In developing grapevine (Vitis vinifera L.) berries, precursor volatile organic compounds (PVOCs) are largely stored as glycosides which may be hydrolyzed to release VOCs during fruit ripening, wine making, or aging. VOCs can be further transformed by yeast metabolism. Together, these processes contribute to complexity of wine aromas. Floral and citrus odors of many white wine varietals are attributed to monoterpenes and monoterpene alcohols, while phenolic compounds, norisoprenoids, and other volatiles also play important roles in determining aroma. We present an analysis of PVOCs stored as glycosides in developing Gewürztraminer berries during the growing season. We optimized a method for PVOC analysis suitable for small amounts of Muscat grapevine berries and showed that the amount of PVOCs dramatically increased during and after véraison. Transcript profiling of the same berry samples underscored the involvement of terpenoid pathway genes in the accumulation of PVOCs. The onset of monoterpenol PVOC accumulation in developing grapes was correlated with an increase of transcript abundances of early terpenoid pathway enzymes. Transcripts encoding the methylerythritol phosphate pathway gene 4-hydroxy-3-methylbut-2-enyl diphosphate reductase, as well as geraniol diphosphate synthase, were up-regulated preceding and during the increase in monoterpenol PVOCs. Transcripts for linalool/nerolidol synthase increased in later véraison stages.
Journal of Plant Physiology | 2013
Robin D. Mellway; Steven T. Lund
MIKC(c)-type MADS-domain transcription factors include important regulators of floral development that interact in protein complexes to control the development of floral organs, as described by the ABC model. Members of the SEPALLATA (SEP) and AGAMOUS (AG) MADS clades include proteins involved in stamen and carpel specification and certain members of these families, such as tomato (Solanum lycopersicon) SlRIN and SlTAGL1, have been shown to regulate fruit development and ripening initiation. A number of expression studies have shown that several floral homeotic MADS genes are expressed during grapevine (Vitis vinifera) berry development, including potential homologues of these characterized ripening regulators. To gain insight into the regulation of berry development and ripening in grapevine, we studied the interactions and functions of grapevine floral homeotic MADS genes. Using the yeast 2- and 3-hybrid systems, we determined that the complexes formed during fruit development and ripening may involve several classes of floral homeotic MADS proteins. We found that a heterologously expressed grapevine SEP gene, VviSEP4, is capable of partially complementing the non-ripening phenotype of the tomato rin mutant, indicating that a role for this gene in ripening regulation may be conserved in fleshy fruit ripening. We also found that ectopic expression of a grapevine AG clade gene, VviAG1, in tomato results in the development of fleshy sepals with the chemical characteristics of tomato fruit pericarp. Additionally, we performed 2-hybrid screens on a library prepared from Pinot noir véraison-stage berry and identified proteins that may interact with the MADS factors that are expressed during berry development and that may represent regulatory functions in grape berry development.
Science | 2006
Steven T. Lund; Joerg Bohlmann
BMC Genomics | 2009
Joost Lücker; Mario Laszczak; Derek Smith; Steven T. Lund
Gene | 2007
Fred Y. Peng; Karen E. Reid; Nancy Y. Liao; James Schlosser; Diego Lijavetzky; Robert A. Holt; José Miguel Martínez Zapater; Steven J.M. Jones; Marco A. Marra; Jörg Bohlmann; Steven T. Lund
Phytochemistry | 2010
Joost Lücker; Stefan Martens; Steven T. Lund