Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven T. Rutherford is active.

Publication


Featured researches published by Steven T. Rutherford.


Cold Spring Harbor Perspectives in Medicine | 2012

Bacterial Quorum Sensing: Its Role in Virulence and Possibilities for Its Control

Steven T. Rutherford; Bonnie L. Bassler

Quorum sensing is a process of cell-cell communication that allows bacteria to share information about cell density and adjust gene expression accordingly. This process enables bacteria to express energetically expensive processes as a collective only when the impact of those processes on the environment or on a host will be maximized. Among the many traits controlled by quorum sensing is the expression of virulence factors by pathogenic bacteria. Here we review the quorum-sensing circuits of Staphylococcus aureus, Bacillus cereus, Pseudomonas aeruginosa, and Vibrio cholerae. We outline these canonical quorum-sensing mechanisms and how each uniquely controls virulence factor production. Additionally, we examine recent efforts to inhibit quorum sensing in these pathogens with the goal of designing novel antimicrobial therapeutics.


Genes & Development | 2011

AphA and LuxR/HapR reciprocally control quorum sensing in vibrios

Steven T. Rutherford; Julia C. van Kessel; Yi Shao; Bonnie L. Bassler

Bacteria cycle between periods when they perform individual behaviors and periods when they perform group behaviors. These transitions are controlled by a cell-cell communication process called quorum sensing, in which extracellular signal molecules, called autoinducers (AIs), are released, accumulate, and are synchronously detected by a group of bacteria. AI detection results in community-wide changes in gene expression, enabling bacteria to collectively execute behaviors such as bioluminescence, biofilm formation, and virulence factor production. In this study, we show that the transcription factor AphA is a master regulator of quorum sensing that operates at low cell density (LCD) in Vibrio harveyi and Vibrio cholerae. In contrast, LuxR (V. harveyi)/HapR (V. cholerae) is the master regulator that operates at high cell density (HCD). At LCD, redundant small noncoding RNAs (sRNAs) activate production of AphA, and AphA and the sRNAs repress production of LuxR/HapR. Conversely, at HCD, LuxR/HapR represses aphA. This network architecture ensures maximal AphA production at LCD and maximal LuxR/HapR production at HCD. Microarray analyses reveal that 300 genes are regulated by AphA at LCD in V. harveyi, a subset of which is also controlled by LuxR. We propose that reciprocal gradients of AphA and LuxR/HapR establish the quorum-sensing LCD and HCD gene expression patterns, respectively.


Genes & Development | 2009

Allosteric control of Escherichia coli rRNA promoter complexes by DksA

Steven T. Rutherford; Courtney L. Villers; Jeong-Hyun Lee; Wilma Ross; Richard L. Gourse

The Escherichia coli DksA protein inserts into the RNA polymerase (RNAP) secondary channel, modifying the transcription initiation complex so that promoters with specific kinetic characteristics are regulated by changes in the concentrations of ppGpp and NTPs. We used footprinting assays to determine the specific kinetic intermediate, RP(I), on which DksA acts. Genetic approaches identified substitutions in the RNAP switch regions, bridge helix, and trigger loop that mimicked, reduced, or enhanced DksA function on rRNA promoters. Our results indicate that DksA binding in the secondary channel of RP(I) disrupts interactions with promoter DNA at least 25 A away, between positions -6 and +6 (the transcription start site is +1). We propose a working model in which the trigger loop and bridge helix transmit effects of DksA to the switch region(s), allosterically affecting switch residues that control clamp opening/closing and/or that interact directly with promoter DNA. DksA thus inhibits the transition to RP(I). Our results illustrate in mechanistic terms how transcription factors can regulate initiation promoter-specifically without interacting directly with DNA.


Journal of Molecular Biology | 2008

Still looking for the magic spot: the crystallographically-defined binding site for ppGpp on RNA polymerase is unlikely to be responsible for rRNA transcription regulation

Catherine E. Vrentas; Tamas Gaal; Melanie B. Berkmen; Steven T. Rutherford; Shanil P. Haugen; Wilma Ross; Richard L. Gourse

Identification of the RNA polymerase (RNAP) binding site for ppGpp, a central regulator of bacterial transcription, is crucial for understanding its mechanism of action. A recent high-resolution X-ray structure defined a ppGpp binding site on Thermus thermophilus RNAP. We report here effects of ppGpp on 10 mutant Escherichia coli RNAPs with substitutions for the analogous residues within 3-4 A of the ppGpp binding site in the T. thermophilus cocrystal. None of the substitutions in E. coli RNAP significantly weakened its responses to ppGpp. This result differs from the originally reported finding of a substitution in E. coli RNAP eliminating ppGpp function. The E. coli RNAPs used in that study likely lacked stoichiometric amounts of omega, an RNAP subunit required for responses of RNAP to ppGpp, in part explaining the discrepancy. Furthermore, we found that ppGpp did not inhibit transcription initiation by T. thermophilus RNAP in vitro or shorten the lifetimes of promoter complexes containing T. thermophilus RNAP, in contrast to the conclusion in the original report. Our results suggest that the ppGpp binding pocket identified in the cocrystal is not the one responsible for regulation of E. coli ribosomal RNA transcription initiation and highlight the importance of inclusion of omega in bacterial RNAP preparations.


Journal of Bacteriology | 2006

DksA Is Required for Growth Phase-Dependent Regulation, Growth Rate-Dependent Control, and Stringent Control of fis Expression in Escherichia coli

Prabhat Mallik; Brian J. Paul; Steven T. Rutherford; Richard L. Gourse; Robert Osuna

DksA is a critical transcription factor in Escherichia coli that binds to RNA polymerase and potentiates control of rRNA promoters and certain amino acid promoters. Given the kinetic similarities between rRNA promoters and the fis promoter (Pfis), we investigated the possibility that DksA might also control transcription from Pfis. We show that the absence of dksA extends transcription from Pfis well into the late logarithmic and stationary growth phases, demonstrating the importance of DksA for growth phase-dependent regulation of fis. We also show that transcription from Pfis increases with steady-state growth rate and that dksA is absolutely required for this regulation. In addition, both DksA and ppGpp are required for inhibition of Pfis promoter activity following amino acid starvation, and these factors act directly and synergistically to negatively control Pfis transcription in vitro. DksA decreases the half-life of the intrinsically short-lived fis promoter-RNA polymerase complex and increases its sensitivity to the concentration of CTP, the predominant initiating nucleotide triphosphate for this promoter. This work extends our understanding of the multiple factors controlling fis expression and demonstrates the generality of the DksA requirement for regulation of kinetically similar promoters.


Genes & Development | 2012

Direct interactions between the coiled-coil tip of DksA and the trigger loop of RNA polymerase mediate transcriptional regulation

Christopher W. Lennon; Wilma Ross; Stephen Martin-Tumasz; Innokenti Toulokhonov; Catherine E. Vrentas; Steven T. Rutherford; Jeong-Hyun Lee; Samuel E. Butcher; Richard L. Gourse

Escherichia coli DksA is a transcription factor that binds to RNA polymerase (RNAP) without binding to DNA, destabilizing RNAP-promoter interactions, sensitizing RNAP to the global regulator ppGpp, and regulating transcription of several hundred target genes, including those encoding rRNA. Previously, we described promoter sequences and kinetic properties that account for DksAs promoter specificity, but how DksA exerts its effects on RNAP has remained unclear. To better understand DksAs mechanism of action, we incorporated benzoyl-phenylalanine at specific positions in DksA and mapped its cross-links to RNAP, constraining computational docking of the two proteins. The resulting evidence-based model of the DksA-RNAP complex as well as additional genetic and biochemical approaches confirmed that DksA binds to the RNAP secondary channel, defined the orientation of DksA in the channel, and predicted a network of DksA interactions with RNAP that includes the rim helices and the mobile trigger loop (TL) domain. Engineered cysteine substitutions in the TL and DksA coiled-coil tip generated a disulfide bond between them, and the interacting residues were absolutely required for DksA function. We suggest that DksA traps the TL in a conformation that destabilizes promoter complexes, an interaction explaining the requirement for the DksA tip and its effects on transcription.


Journal of Bacteriology | 2013

Individual and Combined Roles of the Master Regulators AphA and LuxR in Control of the Vibrio harveyi Quorum-Sensing Regulon

Julia C. van Kessel; Steven T. Rutherford; Yi Shao; Alan F. Utria; Bonnie L. Bassler

Bacteria use a chemical communication process called quorum sensing to control transitions between individual and group behaviors. In the Vibrio harveyi quorum-sensing circuit, two master transcription factors, AphA and LuxR, coordinate the quorum-sensing response. Here we show that AphA regulates 167 genes, LuxR regulates 625 genes, and they coregulate 77 genes. LuxR strongly controls genes at both low cell density and high cell density, suggesting that it is the major quorum-sensing regulator. In contrast, AphA is absent at high cell density and acts to fine-tune quorum-sensing gene expression at low cell density. We examined two loci as case studies of coregulation by AphA and LuxR. First, AphA and LuxR directly regulate expression of the genes encoding the quorum-regulatory small RNAs Qrr2, Qrr3, and Qrr4, the consequence of which is a specifically timed transition between the individual and the group life-styles. Second, AphA and LuxR repress type III secretion system genes but at different times and to different extents. The consequence of this regulation is that type III secretion is restricted to a peak at mid-cell density. Thus, the asymmetric production of AphA and LuxR coupled with differences in their strengths and timing of target gene regulation generate a precise temporal pattern of gene expression.


Journal of Bacteriology | 2006

General Pathway for Turning on Promoters Transcribed by RNA Polymerases Containing Alternative σ Factors

Richard L. Gourse; Wilma Ross; Steven T. Rutherford

In Escherichia coli , the vast majority of transcription results from the RNA polymerase (RNAP) holoenzyme containing σ70 (Eσ70). However, there are six other σ factors that each recognize other sets of promoters, often united by common function. σ32 (σH) controls heat shock promoters, σ54 (σ


The EMBO Journal | 2013

Functional determinants of the quorum-sensing non-coding RNAs and their roles in target regulation

Yi Shao; Lihui Feng; Steven T. Rutherford; Kai Papenfort; Bonnie L. Bassler

Quorum sensing is a chemical communication process that bacteria use to control collective behaviours including bioluminescence, biofilm formation, and virulence factor production. In Vibrio harveyi, five homologous small RNAs (sRNAs) called Qrr1–5, control quorum‐sensing transitions. Here, we identify 16 new targets of the Qrr sRNAs. Mutagenesis reveals that particular sequence differences among the Qrr sRNAs determine their target specificities. Modelling coupled with biochemical and genetic analyses show that all five of the Qrr sRNAs possess four stem‐loops: the first stem‐loop is crucial for base pairing with a subset of targets. This stem‐loop also protects the Qrr sRNAs from RNase E‐mediated degradation. The second stem‐loop contains conserved sequences required for base pairing with the majority of the target mRNAs. The third stem‐loop plays an accessory role in base pairing and stability. The fourth stem‐loop functions as a rho‐independent terminator. In the quorum‐sensing regulon, Qrr sRNAs‐controlled genes are the most rapid to respond to quorum‐sensing autoinducers. The Qrr sRNAs are conserved throughout vibrios, thus insights from this work could apply generally to Vibrio quorum sensing.


Journal of Molecular Biology | 2008

Crystal Structure of Escherichia Coli Rnk, a New RNA Polymerase-Interacting Protein

Valérie Lamour; Steven T. Rutherford; Konstantin Kuznedelov; Udupi A. Ramagopal; Richard L. Gourse; Konstantin Severinov; Seth A. Darst

Sequence-based searches identified a new family of genes in proteobacteria, named rnk, which shares high sequence similarity with the C-terminal domains of the Gre factors (GreA and GreB) and the Thermus/Deinococcus anti-Gre factor Gfh1. We solved the X-ray crystal structure of Escherichia coli regulator of nucleoside kinase (Rnk) at 1.9 A resolution using the anomalous signal from the native protein. The Rnk structure strikingly resembles those of E. coli GreA and GreB and Thermus Gfh1, all of which are RNA polymerase (RNAP) secondary channel effectors and have a C-terminal domain belonging to the FKBP fold. Rnk, however, has a much shorter N-terminal coiled coil. Rnk does not stimulate transcript cleavage in vitro, nor does it reduce the lifetime of the complex formed by RNAP on promoters. We show that Rnk competes with the Gre factors and DksA (another RNAP secondary channel effector) for binding to RNAP in vitro, and although we found that the concentration of Rnk in vivo was much lower than that of DksA, it was similar to that of GreB, consistent with a potential regulatory role for Rnk as an anti-Gre factor.

Collaboration


Dive into the Steven T. Rutherford's collaboration.

Top Co-Authors

Avatar

Richard L. Gourse

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wilma Ross

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Catherine E. Vrentas

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tamas Gaal

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Yi Shao

Princeton University

View shared research outputs
Top Co-Authors

Avatar

Jeong-Hyun Lee

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Melanie B. Berkmen

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge