Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven Theriault is active.

Publication


Featured researches published by Steven Theriault.


Nature | 2004

Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus.

Darwyn Kobasa; Ayato Takada; Kyoko Shinya; Masato Hatta; Peter Halfmann; Steven Theriault; Hiroshi Suzuki; Hidekazu Nishimura; Keiko Mitamura; Norio Sugaya; Taichi Usui; Takeomi Murata; Yasuko Maeda; Shinji Watanabe; M. Suresh; Takashi Suzuki; Yasuo Suzuki; Heinz Feldmann; Yoshihiro Kawaoka

The ‘Spanish’ influenza pandemic of 1918–19 was the most devastating outbreak of infectious disease in recorded history. At least 20 million people died from their illness, which was characterized by an unusually severe and rapid clinical course. The complete sequencing of several genes of the 1918 influenza virus has made it possible to study the functions of the proteins encoded by these genes in viruses generated by reverse genetics, a technique that permits the generation of infectious viruses entirely from cloned complementary DNA. Thus, to identify properties of the 1918 pandemic influenza A strain that might be related to its extraordinary virulence, viruses were produced containing the viral haemagglutinin (HA) and neuraminidase (NA) genes of the 1918 strain. The HA of this strain supports the pathogenicity of a mouse-adapted virus in this animal. Here we demonstrate that the HA of the 1918 virus confers enhanced pathogenicity in mice to recent human viruses that are otherwise non-pathogenic in this host. Moreover, these highly virulent recombinant viruses expressing the 1918 viral HA could infect the entire lung and induce high levels of macrophage-derived chemokines and cytokines, which resulted in infiltration of inflammatory cells and severe haemorrhage, hallmarks of the illness produced during the original pandemic.


PLOS Pathogens | 2006

Molecular Determinants of Ebola Virus Virulence in Mice

Hideki Ebihara; Ayato Takada; Darwyn Kobasa; Steven J.M. Jones; Gabriele Neumann; Steven Theriault; Mike Bray; Heinz Feldmann; Yoshihiro Kawaoka

Zaire ebolavirus (ZEBOV) causes severe hemorrhagic fever in humans and nonhuman primates, with fatality rates in humans of up to 90%. The molecular basis for the extreme virulence of ZEBOV remains elusive. While adult mice resist ZEBOV infection, the Mayinga strain of the virus has been adapted to cause lethal infection in these animals. To understand the pathogenesis underlying the extreme virulence of Ebola virus (EBOV), here we identified the mutations responsible for the acquisition of the high virulence of the adapted Mayinga strain in mice, by using reverse genetics. We found that mutations in viral protein 24 and in the nucleoprotein were primarily responsible for the acquisition of high virulence. Moreover, the role of these proteins in virulence correlated with their ability to evade type I interferon-stimulated antiviral responses. These findings suggest a critical role for overcoming the interferon-induced antiviral state in the pathogenicity of EBOV and offer new insights into the pathogenesis of EBOV infection.


Journal of Virology | 2006

Infection of Naïve Target Cells with Virus-Like Particles: Implications for the Function of Ebola Virus VP24

Thomas Hoenen; Allison Groseth; Larissa Kolesnikova; Steven Theriault; Hideki Ebihara; Bettina Hartlieb; Sandra Bamberg; Heinz Feldmann; Ute Ströher; Stephan Becker

ABSTRACT Infectious virus-like particle (iVLP) systems have recently been established for several negative-strand RNA viruses, including the highly pathogenic Zaire ebolavirus (ZEBOV), and allow study of the viral life cycle under biosafety level 2 conditions. However, current systems depend on the expression of viral helper nucleocapsid proteins in target cells, thus making it impossible to determine whether ribonucleoprotein complexes transferred by iVLPs are able to facilitate initial transcription, an indispensable step in natural infection. Here we describe a ZEBOV iVLP system which overcomes this limitation and show that VP24 is essential for the formation of a functional ribonucleoprotein complex.


Journal of Virology | 2005

RNA Polymerase I-Driven Minigenome System for Ebola Viruses

Allison Groseth; Heinz Feldmann; Steven Theriault; Gülsah Mehmetoglu; Ramon Flick

ABSTRACT In general, Ebola viruses are well known for their ability to cause severe hemorrhagic fever in both human and nonhuman primates. However, despite substantial sequence homology to other members of the family Filoviridae, Reston ebolavirus displays reduced pathogenicity for nonhuman primates and has never been demonstrated to cause clinical disease in humans, despite its ability to cause infection. In order to develop a tool to explore potential roles for transcription and replication in the reduced pathogenicity of Reston ebolavirus, we developed an RNA polymerase I (Pol I)-driven minigenome system. Here we demonstrate successful Reston ebolavirus minigenome rescue, including encapsidation, transcription, and replication, as well as the packaging of minigenome transcripts into progeny particles. The Pol I-driven Reston ebolavirus minigenome system provides a higher signal intensity with less background (higher signal-to-noise ratio) than a comparable T7-driven Reston ebolavirus minigenome system which was developed simultaneously. Successful Reston ebolavirus minigenome rescue was also achieved by the use of helper plasmids derived from the closely related Zaire ebolavirus or the more distantly related Lake Victoria marburgvirus. The use of heterologous helper plasmids in the Reston ebolavirus minigenome system yielded levels of reporter expression which far exceeded the level produced by the homologous helper plasmids. This comparison between minigenomes and helper plasmids from different filovirus species and genera indicates that inherent differences in the transcription and/or replication capacities of the ribonucleoprotein complexes of pathogenic and apathogenic filoviruses may exist, as these observations were confirmed in a Lake Victoria marburgvirus minigenome system.


The Journal of Infectious Diseases | 2007

In Vitro and In Vivo Characterization of Recombinant Ebola Viruses Expressing Enhanced Green Fluorescent Protein

Hideki Ebihara; Steven Theriault; Gabriele Neumann; Judie B. Alimonti; Joan B. Geisbert; Lisa E. Hensley; Allison Groseth; Steven M. Jones; Thomas W. Geisbert; Yoshihiro Kawaoka; Heinz Feldmann

To facilitate an understanding of the molecular aspects of the pathogenesis of Zaire ebolavirus (ZEBOV) infection, we generated 2 different recombinant viruses expressing enhanced green fluorescent protein (eGFP) from additional transcription units inserted at different positions in the virus genome. These viruses showed in vitro phenotypes similar to that of wild-type ZEBOV (wt-ZEBOV) and were stable over multiple passages. Infection with one of the viruses expressing eGFP produced only mild disease in rhesus macaques, demonstrating a marked attenuation in this animal model. However, in mice lacking signal transducer and activator of transcription 1, both viruses expressing eGFP caused lethal cases of disease that were moderately attenuated, compared with that caused by wt-ZEBOV. In mice, viral replication could be easily tracked by the detection of eGFP-positive cells in tissues, by use of flow cytometry. These findings demonstrate that the incorporation of a foreign gene will attenuate ZEBOV in vivo but that these viruses still have potential for in vitro and in vivo research applications.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Stimulation of Ebola virus production from persistent infection through activation of the Ras/MAPK pathway

James E. Strong; Gary Wong; Shane Jones; Allen Grolla; Steven Theriault; Gary P. Kobinger; Heinz Feldmann

Human infections with Ebola virus (EBOV) result in a deadly viral disease known as Ebola hemorrhagic fever. Up to 90% of infected patients die, and there is no available treatment or vaccine. The sporadic human outbreaks are believed to result when EBOV “jumps” from an infected animal to a person and is subsequently transmitted between persons by direct contact with infected blood or body fluids. This study was undertaken to investigate the mechanism by which EBOV can persistently infect and then escape from model cell and animal reservoir systems. We report a model system in which infection of mouse and bat cell lines with EBOV leads to persistence, which can be broken with low levels of lipopolysaccharide or phorbol-12-myristate-13-acetate (PMA). This reactivation depends on the Ras/MAPK pathway through inhibition of RNA-dependent protein kinase and eukaryotic initiation factor 2α phosphorylation and occurs at the level of protein synthesis. EBOV also can be evoked from mice 7 days after infection by PMA treatment, indicating that a similar mechanism occurs in vivo. Our findings suggest that EBOV may persist in nature through subclinical infection of a reservoir species, such as bats, and that appropriate physiological stimulation may result in increased replication and transmission to new hosts. Identification of a presumptive mechanism responsible for EBOV emergence from its reservoir underscores the “hit-and-run” nature of the initiation of human and/or nonhuman primate EBOV outbreaks and may provide insight into possible countermeasures to interfere with transmission.


Virus Research | 2004

Characterization Of Protein-protein Interactions Between The Nucleocapsid Protein And Membrane Protein Of The Sars Coronavirus.

Runtao He; Andrew Leeson; Melissa Ballantine; Anton Andonov; Lindsay Baker; Frederick Dobie; Yan Li; Nathalie Bastien; Heinz Feldmann; Ute Strocher; Steven Theriault; Todd Cutts; Jingxin Cao; Timothy F. Booth; Frank Plummer; Shaun Tyler; Xuguang Li

Abstract The human coronavirus, associated with severe acute respiratory syndrome (SARS-CoV), was identified and molecularly characterized in 2003. Sequence analysis of the virus indicates that there is only 20% amino acid (aa) identity with known coronaviruses. Previous studies indicate that protein–protein interactions amongst various coronavirus proteins are critical for viral assembly. Yet, little sequence homology between the newly identified SARS-CoV and those previously studied coronaviruses suggests that determination of protein–protein interaction and identification of amino acid sequences, responsible for such interaction in SARS-CoV, are necessary for the elucidation of the molecular mechanism of SARS-CoV replication and rationalization of anti-SARS therapeutic intervention. In this study, we employed mammalian two-hybrid system to investigate possible interactions between SARS-CoV nucleocapsid (N) and the membrane (M) proteins. We found that interaction of the N and M proteins takes place in vivo and identified that a stretch of amino acids (168–208) in the N protein may be critical for such protein–protein interactions. Importantly, the same region has been found to be required for multimerization of the N protein (He et al., 2004) suggesting this region may be crucial in maintaining correct conformation of the N protein for self-interaction and interaction with the M protein.


Viruses | 2015

Evaluating environmental persistence and disinfection of the Ebola virus Makona variant.

Bradley W. M. Cook; Todd Cutts; Aidan M. Nikiforuk; Philip Guillaume Poliquin; Deborah A. Court; James E. Strong; Steven Theriault

BACKGROUND The current disease outbreak caused by the Ebola virus Makona variant (EBOV/Mak) has led to unprecedented morbidity and lethality given its geographic reach and sustained transmission. Sodium hypochlorite and ethanol are well-accepted decontamination agents, however little published evidence supports the selection of appropriate concentrations and contact times. The present study addresses the environmental robustness of EBOV/Mak and evaluates the effectiveness of sodium hypochlorite and ethanol as disinfectants. METHODS EBOV/Mak was suspended in a simulated organic soil load and dried onto surfaces. Viability was measured at 1 hour, 24 hours, 72 hours, and 192 hours. For the evaluation of disinfectants, EBOV/Mak in a simulated organic soil was dried onto stainless steel carriers and disinfected with 0.01% (v/v), 0.1% (v/v), 0.5% (v/v) and 1% (v/v) sodium hypochlorite solutions or 67% (v/v) ethanol at contact times of 1, 5 or 10 minutes. RESULTS EBOV/Mak persisted longer on steel and plastic surfaces (192 hours) than cotton (<24 hours). Dilute sodium hypochlorite (0.01% and 0.1%) showed little antiviral action, whereas 0.5% and 1% sodium hypochlorite solutions demonstrated recoverable virus at one minute but sterilized surfaces in five minutes. Disinfection with 67% ethanol did not fully clear infectious virions from 3/9 carriers at 1 minute but sterilized all carriers at 5 and 10 minutes. CONCLUSIONS Sodium hypochlorite and ethanol effectively decontaminate EBOV/Mak suspended in a simulated organic load; however, selection of concentration and contact time proves critical.


The Journal of Infectious Diseases | 2007

In Vitro Evaluation of Antisense RNA Efficacy against Filovirus Infection, by Use of Reverse Genetics

Allison Groseth; Thomas Hoenen; Judie B. Alimonti; Florian Zielecki; Hideki Ebihara; Steven Theriault; Ute Ströher; Stephan Becker; Heinz Feldmann

BACKGROUND Recent reports indicate the possibility of using small interfering RNAs (siRNAs) to treat filovirus infections; however, they also show that the effectiveness of this approach is highly dependent on target site selection. Therefore, we explored the application of minigenomes as screening tools to identify functional siRNA targets under biosafety level 2 conditions. METHODS siRNA candidates were screened using the minigenome system to identify those with potential antiviral activity, compared with controls with poor predicted function on the basis of design guidelines, or those that were noncomplementary to Zaire ebolavirus (ZEBOV). These findings were then validated in cell culture by use of a previously developed ZEBOV expressing green fluorescent protein (ZEBOV-GFP), which allowed siRNA function to be easily assessed via flow cytometry or focus formation. RESULTS The most promising siRNA based on minigenome screening, targeting the nucleoprotein (NP) mRNA (ZNP1), also reduced protein expression and decreased viral titers after infection with ZEBOV-GFP to an extent similar to that reported for an siRNA recently shown to be therapeutic in guinea pigs. CONCLUSIONS Minigenome screening appears to be an effective and convenient method of evaluating the therapeutic potential of siRNA targets, and findings suggest that its use would increase success rates in later stages of siRNA testing.


Archives of virology. Supplementum | 2005

The role of reverse genetics systems in determining filovirus pathogenicity.

Steven Theriault; Allison Groseth; H. Artsob; Heinz Feldmann

The family Filoviridae is comprised of two genera: Marburgvirus and Ebolavirus. To date minigenome systems have been developed for two Ebola viruses (Reston ebolavirus and Zaire ebolavirus [ZEBOV]) as well as for Lake Victoria marburgvirus, the sole member of the Marburgvirus genus. The use of these minigenome systems has helped characterize functions for many viral proteins in both genera and have provided valuable insight towards the development of an infectious clone system in the case of ZEBOV. The recent development of two such infectious clone systems for ZEBOV now allow effective strategies for experimental mutagenesis to study the biology and pathogenesis of one of the most lethal human pathogens.

Collaboration


Dive into the Steven Theriault's collaboration.

Top Co-Authors

Avatar

Todd Cutts

Public Health Agency of Canada

View shared research outputs
Top Co-Authors

Avatar

Heinz Feldmann

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allison Groseth

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hideki Ebihara

Public Health Agency of Canada

View shared research outputs
Top Co-Authors

Avatar

Yoshihiro Kawaoka

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Gabriele Neumann

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge