Steven van Heuven
University of Groningen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Steven van Heuven.
Science | 2015
Peter Landschützer; Nicolas Gruber; F. Alexander Haumann; Christian Rödenbeck; Dorothee C. E. Bakker; Steven van Heuven; Mario Hoppema; Nicolas Metzl; Colm Sweeney; Taro Takahashi; Bronte Tilbrook; Rik Wanninkhof
Uptake uptick Has global warming slowed the uptake of atmospheric CO2 by the Southern Ocean? Landschützer et al. say no (see the Perspective by Fletcher). Previous work suggested that the strength of the Southern Ocean carbon sink fell during the 1990s. This raised concerns that such a decline would exacerbate the rise of atmospheric CO2 and thereby increase global surface air temperatures and ocean acidity. The newer data show that the Southern Ocean carbon sink strengthened again over the past decade, which illustrates the dynamic nature of the process and alleviates some of the anxiety about its earlier weakening trend. Science, this issue p. 1221; see also p. 1165 Carbon uptake by the Southern Ocean has increased again after its slowdown in the 1990s. [Also see Perspective by Fletcher] Several studies have suggested that the carbon sink in the Southern Ocean—the ocean’s strongest region for the uptake of anthropogenic CO2 —has weakened in recent decades. We demonstrated, on the basis of multidecadal analyses of surface ocean CO2 observations, that this weakening trend stopped around 2002, and by 2012, the Southern Ocean had regained its expected strength based on the growth of atmospheric CO2. All three Southern Ocean sectors have contributed to this reinvigoration of the carbon sink, yet differences in the processes between sectors exist, related to a tendency toward a zonally more asymmetric atmospheric circulation. The large decadal variations in the Southern Ocean carbon sink suggest a rather dynamic ocean carbon cycle that varies more in time than previously recognized.
Global Biogeochemical Cycles | 2014
Adam Ulfsbo; Nicolas Cassar; Meri Korhonen; Steven van Heuven; Mario Hoppema; Gerhard Kattner; Leif G. Anderson
Large-scale patterns of net community production (NCP) were estimated during the late summer cruise ARK-XXVI/3 (TransArc, August/September 2011) to the central Arctic Ocean. Several approaches were used based on the following: (i) continuous measurements of surface water oxygen to argon ratios (O2/Ar), (ii) underway measurements of surface partial pressure of carbon dioxide (pCO2), (iii) discrete samples of dissolved inorganic carbon, and (iv) dissolved inorganic nitrogen and phosphate. The NCP estimates agreed well within the uncertainties associated with each approach. The highest late summer NCP (up to 6 mol C m-2) was observed in the marginal sea ice zone region. Low values (<1 mol C m-2) were found in the sea ice-covered deep basins with a strong spatial variability. Lowest values were found in the Amundsen Basin and moderate values in the Nansen and Makarov Basins with slightly higher estimates over the Mendeleev Ridge. Our findings support a coupling of NCP to sea ice coverage and nutrient supply and thus stress a potential change in spatial and temporal distribution of NCP in a future Arctic Ocean. To follow the evolution of NCP in space and time, it is suggested to apply one or several of these approaches in shipboard investigations with a time interval of 3 to 5 years.
Philosophical Transactions of the Royal Society A | 2014
Steven van Heuven; Mario Hoppema; Elisabeth Marie Jones; Henricus de Baar
Data are presented for total carbon dioxide (TCO2), oxygen and nutrients from 14 cruises covering two repeat sections across the Weddell Gyre, from 1973 to 2010. Assessments of the rate of increase in anthropogenic CO2 (Cant) are made at three locations. Along the Prime Meridian, TCO2 is observed to steadily increase in the bottom water. Accompanying changes in silicate, nitrate and oxygen confirm the non-steady state of the Weddell circulation. The rate of increase in TCO2 of +0.12±0.05 μmol kg−1 yr−1 therefore poses an upper limit to the rate of increase in Cant. By contrast, the bottom water located in the central Weddell Sea exhibits no significant increase in TCO2, suggesting that this water is less well ventilated at the southern margins of the Weddell Sea. At the tip of the Antarctic Peninsula (i.e. the formation region of the bottom water found at the Prime Meridian), the high rate of increase in TCO2 over time observed at the lowest temperatures suggests that nearly full equilibration occurs with the anthropogenic CO2 of the atmosphere. This observation constitutes rare evidence for the possibility that ice cover is not a major impediment for uptake of Cant in this prominent deep water formation region.
Journal of Geophysical Research | 2014
Ylva Ericson; Adam Ulfsbo; Steven van Heuven; Gerhard Kattner; Leif G. Anderson
Concentrations of dissolved inorganic carbon (DIC), total alkalinity (TA), nutrients, and oxygen in subsurface waters of the central Arctic Ocean have been investigated for conceivable time trends over the last two decades. Data from six cruises (1991–2011) that cover the Nansen, Amundsen, and Makarov Basins were included in this analysis. In waters deeper than 2000 m, no statistically significant trend could be observed for DIC, TA, phosphate, or nitrate, but a small rate of increase in apparent oxygen utilization (AOU) was noticeable. For the individual stations, differences in concentration of each property were computed between the mean concentrations in the Arctic Atlantic Water (AAW) or the upper Polar Deep Water (uPDW), i.e., between about 150 and 1400 m depth, and in the deep water (assumed invariable over time). In these shallower water layers, we observe significant above-zero time trends for DIC, in the range of 0.6–0.9 µmol kg-1 yr-1 (for AAW) and 0.4–0.6 µmol kg-1 yr-1 (for uPDW). No time trend in nutrients could be observed, indicating no change in the rate of organic matter mineralization within this depth range. Consequently, the buildup of DIC is attributed to increasing concentrations of anthropogenic carbon in the waters flowing into these depth layers of the Arctic Ocean. The resulting rate of increase of the column inventory of anthropogenic CO2 is estimated to be between 0.6 and 0.9 mol C m-2 yr-1, with distinct differences between basins.
Ocean Dynamics | 2018
Essowe Panassa; J. Magdalena Santana-Casiano; Melchor González-Dávila; Mario Hoppema; Steven van Heuven; Christoph Völker; Dieter Wolf-Gladrow; Judith Hauck
Antarctic Intermediate Water (AAIW) formation constitutes an important mechanism for the export of macronutrients out of the Southern Ocean that fuels primary production in low latitudes. We used quality-controlled gridded data from five hydrographic cruises between 1990 and 2014 to examine decadal variability in nutrients and dissolved inorganic carbon (DIC) in the AAIW (neutral density range 27 < γn < 27.4) along the Prime Meridian. Significant positive trends were found in DIC (0.70 ± 0.4 μmol kg− 1 year− 1) and nitrate (0.08 ± 0.06 μ mol kg− 1 year− 1) along with decreasing trends in temperature (− 0.015 ± 0.01∘C year− 1) and salinity (− 0.003 ± 0.002 year− 1) in the AAIW. Accompanying this is an increase in apparent oxygen utilization (AOU, 0.16 ± 0.07 μ mol kg− 1 year− 1). We estimated that 75% of the DIC change has an anthropogenic origin. The remainder of the trends support a scenario of a strengthening of the upper-ocean overturning circulation in the Atlantic sector of the Southern Ocean in response to the positive trend in the Southern Annular Mode. A decrease in net primary productivity (more nutrients unutilized) in the source waters of the AAIW could have contributed as well but cannot fully explain all observed changes.
PLOS ONE | 2018
Didier M. de Bakker; Alice E. Webb; Lisanne A. van den Bogaart; Steven van Heuven; Erik H. Meesters; Fleur C. van Duyl
Excavating sponges are among the most important macro-eroders of carbonate substrates in marine systems. Their capacity to remove substantial amounts of limestone makes these animals significant players that can unbalance the reef carbonate budget of tropical coral reefs. Nevertheless, excavating sponges are currently rarely incorporated in standardized surveys and experimental work is often restricted to a few species. Here were provide chemical and mechanical bioerosion rates for the six excavating sponge species most commonly found on the shallow reef of Curaçao (southern Caribbean): Cliona caribbaea, C. aprica, C. delitrix, C. amplicavata, Siphonodictyon brevitubulatum and Suberea flavolivescens. Chemical, mechanical and total bioerosion rates were estimated based on various experimental approaches applied to sponge infested limestone cores. Conventional standing incubation techniques were shown to strongly influence the chemical dissolution signal. Final rates, based on the change in alkalinity of the incubation water, declined significantly as a function of incubation time. This effect was mitigated by the use of a flow-through incubation system. Additionally, we found that mechanically removed carbonate fragments collected in the flow-through chamber (1 h) as well as a long-term collection method (1 wk) generally yielded comparable estimates for the capacity of these sponges to mechanically remove substratum. Observed interspecific variation could evidently be linked to the adopted boring strategy (i.e. gallery-forming, cavity-forming or network-working) and presence or absence of symbiotic zooxanthellae. Notably, a clear diurnal pattern was found only in species that harbour a dense photosymbiotic community. In these species chemical erosion was substantially higher during the day. Overall, the sum of individually acquired chemical and mechanical erosion using flow-through incubations was comparable to rates obtained gravimetrically. Such consistency is a first in this field of research. These findings support the much needed confirmation that, depending on the scientific demand, the different approaches presented here can be implemented concurrently as standardized methods.
Global Biogeochemical Cycles | 2018
Adam Ulfsbo; Elizabeth M. Jones; Núria Casacuberta; Meri Korhonen; Benjamin Rabe; Michael Karcher; Steven van Heuven
The extended multiple linear regression (eMLR) technique is used to determine changes in anthropogenic carbon in the intermediate layers of the Eurasian Basin based on occupations from four cruises between 1996 and 2015. The results show a significant increase in basin‐wide anthropogenic carbon storage in the Nansen Basin (0.44‐0.73 ± 0.14 mol C m−2 yr−1) and the Amundsen Basin (0.63‐1.04 ± 0.09 mol C m−2 yr−1). Over the last two decades, inferred changes in ocean acidification (0.020‐0.055 pH units) and calcium carbonate desaturation (0.05‐0.18 units) are pronounced and rapid. These results, together with results from carbonate‐dynamic box model simulations and 129I tracer distribution simulations, suggest that the accumulation of anthropogenic carbon in the intermediate layers of the Eurasian Basin are consistent with increasing concentrations of anthropogenic carbon in source waters of Atlantic origin entering the Arctic Ocean followed by interior transport. The dissimilar distributions of anthropogenic carbon in the interior Nansen and Amundsen Basins are likely due to differences in the lateral ventilation of the intermediate layers by the return flows and ramifications of the boundary current along the topographic boundaries in the Eurasian Basin.
Earth System Science Data | 2016
Are Olsen; Robert M. Key; Steven van Heuven; S. K. Lauvset; A. Velo; X. Lin; C. Schirnick; Alex Kozyr; Toste Tanhua; Mario Hoppema; Sara Jutterström; Reiner Steinfeldt; Emil Jeansson; Masao Ishii; Fiz F. Pérez; T. Suzuki
Global Biogeochemical Cycles | 2007
Helmuth Thomas; A. E. Friederike Prowe; Steven van Heuven; Yann Bozec; Hein J. W. de Baar; L.-S. Schiettecatte; K. Suykens; Mathieu Koné; Alberto Borges; Ivan D. Lima; Scott C. Doney
Earth System Science Data | 2016
Dorothee C. E. Bakker; Benjamin Pfeil; Camilla S Landa; Nicolas Metzl; Kevin M O'Brien; Are Olsen; Karl Smith; Cathy Cosca; Sumiko Harasawa; Stephen D Jones; S. Nakaoka; Yukihiro Nojiri; Ute Schuster; Tobias Steinhoff; Colm Sweeney; Taro Takahashi; Bronte Tilbrook; Chisato Wada; Rik Wanninkhof; S. R. Alin; Carlos F. Balestrini; Leticia Barbero; Nicholas R. Bates; Alejandro A. Bianchi; Frédéric Kpédonou Bonou; Jacqueline Boutin; Yann Bozec; Eugene F. Burger; Wei-Jun Cai; R. D. Castle