Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven W. Leavitt is active.

Publication


Featured researches published by Steven W. Leavitt.


BioScience | 2008

Consequences of More Extreme Precipitation Regimes for Terrestrial Ecosystems

Alan K. Knapp; Claus Beier; David D. Briske; Aimée T. Classen; Yiqi Luo; Markus Reichstein; Melinda D. Smith; Stanley D. Smith; Jesse E. Bell; Philip A. Fay; Jana L. Heisler; Steven W. Leavitt; Rebecca A. Sherry; Benjamin Smith; Ensheng Weng

ABSTRACT Amplification of the hydrological cycle as a consequence of global warming is forecast to lead to more extreme intra-annual precipitation regimes characterized by larger rainfall events and longer intervals between events. We present a conceptual framework, based on past investigations and ecological theory, for predicting the consequences of this underappreciated aspect of climate change. We consider a broad range of terrestrial ecosystems that vary in their overall water balance. More extreme rainfall regimes are expected to increase the duration and severity of soil water stress in mesic ecosystems as intervals between rainfall events increase. In contrast, xeric ecosystems may exhibit the opposite response to extreme events. Larger but less frequent rainfall events may result in proportional reductions in evaporative losses in xeric systems, and thus may lead to greater soil water availability. Hydric (wetland) ecosystems are predicted to experience reduced periods of anoxia in response to prolonged intervals between rainfall events. Understanding these contingent effects of ecosystem water balance is necessary for predicting how more extreme precipitation regimes will modify ecosystem processes and alter interactions with related global change drivers.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Forest responses to increasing aridity and warmth in the southwestern United States

A. Park Williams; Craig D. Allen; Constance I. Millar; Thomas W. Swetnam; Joel Michaelsen; Christopher J. Still; Steven W. Leavitt

In recent decades, intense droughts, insect outbreaks, and wildfires have led to decreasing tree growth and increasing mortality in many temperate forests. We compared annual tree-ring width data from 1,097 populations in the coterminous United States to climate data and evaluated site-specific tree responses to climate variations throughout the 20th century. For each population, we developed a climate-driven growth equation by using climate records to predict annual ring widths. Forests within the southwestern United States appear particularly sensitive to drought and warmth. We input 21st century climate projections to the equations to predict growth responses. Our results suggest that if temperature and aridity rise as they are projected to, southwestern trees will experience substantially reduced growth during this century. As tree growth declines, mortality rates may increase at many sites. Increases in wildfires and bark-beetle outbreaks in the most recent decade are likely related to extreme drought and high temperatures during this period. Using satellite imagery and aerial survey data, we conservatively calculate that ≈2.7% of southwestern forest and woodland area experienced substantial mortality due to wildfires from 1984 to 2006, and ≈7.6% experienced mortality associated with bark beetles from 1997 to 2008. We estimate that up to ≈18% of southwestern forest area (excluding woodlands) experienced mortality due to bark beetles or wildfire during this period. Expected climatic changes will alter future forest productivity, disturbance regimes, and species ranges throughout the Southwest. Emerging knowledge of these impending transitions informs efforts to adaptively manage southwestern forests.


Science | 1994

Trends in Stomatal Density and 13C/12C Ratios of Pinus flexilis Needles During Last Glacial-Interglacial Cycle

P. K. Van de Water; Steven W. Leavitt; Julio L. Betancourt

Measurements of stomatal density and δ13C of limber pine (Pinus flexilis) needles (leaves) preserved in pack rat middens from the Great Basin reveal shifts in plant physiology and leaf morphology during the last 30,000 years. Sites were selected so as to offset glacial to Holocene climatic differences and thus to isolate the effects of changing atmospheric CO2 levels. Stomatal density decreased ∼17 percent and δ13C decreased ∼1.5 per mil during deglaciation from 15,000 to 12,000 years ago, concomitant with a 30 percent increase in atmospheric CO2. Water-use efficiency increased ∼15 percent during deglaciation, if temperature and humidity were held constant and the proxy values for CO2 and δ13C of past atmospheres are accurate. The δ13C variations may help constrain hypotheses about the redistribution of carbon between the atmosphere and biosphere during the last glacial-interglacial cycle.


Ecology | 1997

VARIATIONS OF WOOD δ13C AND WATER‐USE EFFICIENCY OF ABIES ALBA DURING THE LAST CENTURY

Didier Bert; Steven W. Leavitt; Jean Luc Dupouey

Variations of intrinsic water-use efficiency during the last century were in- vestigated based on analysis of 613C in tree rings of Abies alba from the Jura Mountains (eastern France). To separate the effects related to the age of the tree at the time the tree ring was formed from effects due to environmental changes, analyzed wood samples were extracted from a very large sample set including different tree ages and calendar dates of wood formation. For the first 75 yr of the life of Abies alba, 813C of wood holocellulose increases with the age of the tree from -24.4%o at age 15 to approximately -22.5%o at age 75. Between the ages of 75 and 150 values remain constant at -22.5%o. Consequently, the effect of the tree age on isotopic discrimination has to be taken into account in studies on the long-term environmental effects on 613C in tree rings. Divergent trends of 613C during the last century were observed between tree rings formed at age 40 and bulk air data. The isotopic discrimination A varied insignificantly around a mean of 17.3%o between the 1860s and the 1930s. It then decreased to 15.8%o from the 1930s to the 1980s. Using these results and classical models of carbon discrimination, we calculated that the intrinsic water-use efficiency (A/gw, the ratio of CO2 assimilation rate to stomatal conductance for water vapor), integrated over the year, has increased by 30% between the 1930s and the 1980s. These results, obtained at the level of mature trees, are consistent with the physiological effects of increasing CO2 concentrations as observed in controlled experiments on young seedlings. They are consistent with the strong increases in radial growth observed for Abies alba in western Europe over the past decades. However, other long-term environmental changes such as increasing nitrogen deposition could cause similar effects.


Water Resources Research | 1999

Free-air CO2 enrichment and soil nitrogen effects on energy balance and evapotranspiration of wheat

Bruce A. Kimball; Robert L. LaMorte; Paul J. Pinter; Gerard W. Wall; Douglas J. Hunsaker; Floyd J. Adamsen; Steven W. Leavitt; T. L. Thompson; Allan D. Matthias; T. J. Brooks

In order to determine the likely effects of the increasing atmospheric CO2 concentration on future evapotranspiration, ET, plots of field-grown wheat were exposed to concentrations of 550 µmol/mol CO2 (or 200 µmol/mol above current ambient levels of about 360 µmol/mol) using a free-air CO2 enrichment (FACE) facility. Data were collected for four growing seasons at ample water and fertilizer (high N) and for two seasons when soil nitrogen was limited (low N). Measurements were made of net radiation, Rn; soil heat flux; air and soil temperatures; canopy temperature, Ts; and wind speed. Sensible heat flux was calculated from the wind and temperature measurements. ET, that is, latent heat flux, was determined as a residual in the energy balance. The FACE treatment increased daytime Ts about 0.6° and 1.1°C at high and low N, respectively. Daily total Rn was reduced by 1.3% at both levels of N. Daily ET was consistently lower in the FACE plots, by about 6.7% and 19.5% for high and low N, respectively.


Chemical Geology: Isotope Geoscience Section | 1991

Seasonal stable-carbon isotope variability in tree rings: possible paleoenvironmental signals

Steven W. Leavitt; Austin Lone

Leavitt, SW. and Long, A., 1991. Seasonal stable-carbon isotope variability in tree rings: possible paleoenvironmental signals. Chem. Geol. (Isot. Geosci. Sect.), 87: 59-70. Plant stable-carbon isotope fractionation models indicate that 613C of atmospheric C02, CO1 concentration, light and moisture stress, among other factors, may potentially affect the 613C of fixed carbon. Seasonal 613C variations in tree rings may therefore represent a new tool for paleoenvironmental reconstruction. The seasonal 613C patterns in growth rings exist in trees (conifer and hardwood) from tropical and temperate localities, and isotopic variation is even seen in trees which are lacking or have poorly-defined rings. The patterns in different rings from a single tree are usually similar, although differences in amplitude and timing of maxima and/or minima are common. Some of the differences may be attributable to radial variation of the 613C patterns which was found to be substantial in a severely water-stressed tree. Correlations of 613C patterns and corresponding seasonal environmental variation for one well-monitored tree showed greater response of the S13C change to measured soil moisture and precipitation than to temperature, calculated soil moisture, solar radiation, or net photosynthesis (as estimated from CO1 release).


Radiocarbon | 1996

Estimation of slow- and fast-cycling soil organic carbon pools from 6N HCl hydrolysis

Steven W. Leavitt; R. F. Follett; Eldor A. Paul

Acid hydrolysis is used to fractionate the soil organic carbon pool into relatively slow- and fast-cycling compartments on soils from Arizona, the Great Plains states and Michigan collected for carbon isotope tracer studies related to soil carbon sequestration, for studies of shifts in C 3 /C 4 vegetation, and for “pre-bomb” soil-carbon inventories. Prior to hydrolysis, soil samples are first treated with cold 0.5–1N HCl to remove soil carbonates if necessary. Samples are then dispersed in a concentrated NaCl solution (ρ≍1.2 g cm -3 ) and floated plant fragments are skimmed off the surface. After rinsing and drying, all remaining recognizable plant fragments are picked from the soil under 20x magnification. Plant-free soils, and hot, 6N HCl acid-hydrolysis residue and hydrolyzate fractions are analyzed for carbon content, δ 13 C and 14 C age, and the carbon distribution is verified within 1–2% by stable-carbon isotope mass balance. On average, the recalcitrant residue fraction is 1800 yr older and 2.6% more 13 C-depleted than total soil organic carbon. A test of hydrolysis with fresh plant fragments produced as much as 71–76% in the acid-hydrolysis residue pool. Thus, if plant fragments are not largely removed prior to hydrolysis, the residue fraction may date much younger than it actually is.


American Antiquity | 2002

Climate and diet in fremont prehistory: Economic variability and abandonment of maize agriculture in the Great Salt Lake basin

Joan Brenner Coltrain; Steven W. Leavitt

Research reported here is based on the stable isotope (δ 13C,δ 15N) and radiocarbon chemistry of Fremont burials from wetlands lining the eastern shores of the Great Salt Lake (GSL). Bone collagen stable isotope signatures covary with reliance on maize and intake of animal protein, facilitating useful reconstructions of past diet. Among the GSL Fremont, economic strategies vary over time with an initial increase in reliance on maize (A.D. 400–850) followed by a period of marked economic diversity (A.D 850–1150) then a return to reliance on wild foods (after A.D. 1150). During the period of greatest economic diversity, male and female diets vary significantly and male diets are correlated with status differences evidenced by grave goods. There is also a clear temporal correlation between the rapid abandonment of maize agriculture and significant moisture anomalies in regional tree-ring chronologies and pollen profiles. These results are discussed in the context of recent arguments regarding economic diversity, social complexity, and the demise of the Fremont.


Basic and Applied Ecology | 2001

Elevated CO2 stimulates soil respiration in a FACE wheat field

Elise Pendall; Steven W. Leavitt; T. J. Brooks; Bruce A. Kimball; Paul J. Pinter; Gerhard W. Wall; Robert L. LaMorte; Gabriele Wechsung; Frank Wechsung; F.J. Adamsen; Allan D. Matthias; Thomas L. Thompson

Summary Understanding the response of soil carbon (C) dynamics to higher atmospheric CO 2 concentrations is critical for evaluating the potential for soil C sequestration on time scales of decades to centuries. Here, we report on changes in soil respiration under Free-Air CO 2 Enrichment (FACE) where spring wheat was grown in an open field at two CO 2 concentrations (ambient and ambient+200 μmol mol −1 ), under natural meteorological conditions. FACE increased soil respiration rates by 40—70% during the peak of wheat growth. On the FACE plots, stable C isotopic composition of soil CO 2 was used to partition the soil CO 2 flux into C from rhizosphere respiration and decomposition of pre-existing C. Decomposition contributed 100% of the soil CO 2 flux before crop growth commenced, and only 35—45% of the flux at the peak of the growing season. Decomposition rates were not correlated with soil temperature, but rhizosphere respiration rates were strongly correlated with green leaf area index. Ein Verstandnis der Antwort der Kohlenstoff-Dynamik (C) im Boden auf hohere CO 2 -Konzentrationen in der Atmosphare ist bedeutsam fur die Bewertung des Potentials fur die C-Sequestration in Zeitraumen von Jahrzehnten bis Jahrhunderten. Hier berichten wir uber Veranderungen in der Bodenatmung unter Free-Air CO 2 Enrichment (FACE), bei dem Sommerweizen in einem offenen Feld unter zwei CO 2 -Konzentrationen (Umgebung und Umgebung + 200 (mol mol −1 ) und unter naturlichen meteorologischen Bedingungen angebaut wurde. FACE erhohte die Bodenatmungsraten um 40—70% wahrend des Maximums des Weizenwachstums. Auf den FACE Plots wurde die Zusammensetzung an stabilen C Isotopen des Boden-CO 2 genutzt, um den Boden CO 2 -Fluss zu C durch Rhizospharen-Atmung von der Zersetzung von zuvor existierendem C zu trennen. Die Zersetzung trug 100% des Boden-CO 2 -Flusses vor dem Beginn des Weizenwachstums bei, und nur 35—45% des Flusses wahrend des Maximums des Wachstums. Die Zersetzungsraten waren nicht mit der Bodentemperatur korreliert, aber die Rhizospharen-Atmungsraten waren eng korreliert mit dem grunen Blattflachen-Index.


Agricultural and Forest Meteorology | 1994

Carbon isotope dynamics of free-air CO2-enriched cotton and soils

Steven W. Leavitt; Eldor A. Paul; Bruce A. Kimball; George R. Hendrey; Jack R. Mauney; Roy Rauschkolb; Hugo H. Rogers; Keith F. Lewin; John Nagy; Paul J. Pinter; Hyrum B. Johnson

A role for soils as global carbon sink or source under increasing atmospheric CO2 concentrations has been speculative. Free-air carbon dioxide enrichment (FACE) experiments with cotton, conducted from 1989 to 1991 at the Maricopa Agricultural Center in Arizona, maintained circular plots at 550 μmol mol−1 CO2 with tank CO2 while adjacent ambient control plots averaged about 370 μmol mol−1 CO2. This provided an exceptional test for entry of carbon into soils because the petrochemically derived tank CO2 used to enrich the air above the FACE plots was depleted in both radiocarbon (14C content was 0% modern carbon (pmC)) and 13C (δ13C≈ −36‰) relative to background air, thus serving as a potent isotopic tracer. Flask air samples, and plant and soil samples were collected in conjunction with the 1991 experiment. Most of the isotopic analyses on the plants were performed on the holocellulose component. Soil organic carbon was obtained by first removing carbonate with HCl, floating off plant fragments with a NaCl solution, and picking out remaining plant fragments under magnification. The δ13C of the air above the FACE plots was approximately −15 to −19‰, i.e. much more 13C depleted than the background air of approximately −7.5‰. The δ13C values of plants and soils in the FACE plots were 10–12‰ and 2‰13C-depleted, respectively, compared with their control counterparts. The 14C content of the FACE cotton plants was approximately 40 pmC lower than tha tof the control cotton, but the 14C results from soils were conflicting and therefore not as revealing as the δ13C of soils. Soil stable-carbon isotope patterns were consistent, and mass balance calculations indicate that about 10% of the present organic carbon content in the FACE soil derived from the 3 year FACE experiment. At a minimum, this is an important quantitative measure of carbon turnover, but the presence of 13C-depleted carbon, even in the recalcitrant 6 N HCl resistant soil organic fraction (average age 2200 years before present (BP)), suggests that at least some portion of this 10% is an actual increase in carbon accumulation. Similar isotopic studies on FACE experiments in different ecosystems could permit more definitive assessment of carbon turnover rates and perhaps provide insight into the extent to which soil organic matter can accommodate the ‘missing’ carbon in the global carbon cycle.

Collaboration


Dive into the Steven W. Leavitt's collaboration.

Researchain Logo
Decentralizing Knowledge