Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stewart Burn is active.

Publication


Featured researches published by Stewart Burn.


international conference on computer vision | 2011

Superpixels via pseudo-Boolean optimization

Yuhang Zhang; Richard I. Hartley; John Mashford; Stewart Burn

We propose an algorithm for creating superpixels. The major step in our algorithm is simply minimizing two pseudo-Boolean functions. The processing time of our algorithm on images of moderate size is only half a second. Experiments on a benchmark dataset show that our method produces superpixels of comparable quality with existing algorithms. Last but not least, the speed of our algorithm is independent of the number of superpixels, which is usually the bottle-neck for the traditional algorithms of superpixel creation.


network and system security | 2009

An Approach to Leak Detection in Pipe Networks Using Analysis of Monitored Pressure Values by Support Vector Machine

John Mashford; Dhammika De Silva; Donavan Marney; Stewart Burn

This paper presents a method of mining the data obtained by a collection of pressure sensors monitoring a pipe network to obtain information about the location and size of leaks in the network. This inverse engineering problem is effected by support vector machines (SVMs) which act as pattern recognisers. In this study the SVMs are trained and tested on data obtained from the EPANET hydraulic modelling system. Performance assessment of the SVM showed that leak size and location are both predicted with a reasonable degree of accuracy. The information obtained from this SVM analysis would be invaluable to water authorities in overcoming the ongoing problem of leak detection.


Reliability Engineering & System Safety | 2007

A physical probabilistic model to predict failure rates in buried PVC pipelines

Paul Davis; Stewart Burn; Magnus Moglia; Scott J.F. Gould

For older water pipeline materials such as cast iron and asbestos cement, future pipe failure rates can be extrapolated from large volumes of existing historical failure data held by water utilities. However, for newer pipeline materials such as polyvinyl chloride (PVC), only limited failure data exists and confident forecasts of future pipe failures cannot be made from historical data alone. To solve this problem, this paper presents a physical probabilistic model, which has been developed to estimate failure rates in buried PVC pipelines as they age. The model assumes that under in-service operating conditions, crack initiation can occur from inherent defects located in the pipe wall. Linear elastic fracture mechanics theory is used to predict the time to brittle fracture for pipes with internal defects subjected to combined internal pressure and soil deflection loading together with through-wall residual stress. To include uncertainty in the failure process, inherent defect size is treated as a stochastic variable, and modelled with an appropriate probability distribution. Microscopic examination of fracture surfaces from field failures in Australian PVC pipes suggests that the 2-parameter Weibull distribution can be applied. Monte Carlo simulation is then used to estimate lifetime probability distributions for pipes with internal defects, subjected to typical operating conditions. As with inherent defect size, the 2-parameter Weibull distribution is shown to be appropriate to model uncertainty in predicted pipe lifetime. The Weibull hazard function for pipe lifetime is then used to estimate the expected failure rate (per pipe length/per year) as a function of pipe age. To validate the model, predicted failure rates are compared to aggregated failure data from 17 UK water utilities obtained from the United Kingdom Water Industry Research (UKWIR) National Mains Failure Database. In the absence of actual operating pressure data in the UKWIR database, typical values from Australian water utilities were assumed to apply. While the physical probabilistic failure model shows good agreement with data recorded by UK water utilities, actual operating pressures from the UK is required to complete the model validation.


Reliability Engineering & System Safety | 2008

Strong exploration of a cast iron pipe failure model

Magnus Moglia; Paul Davis; Stewart Burn

A physical probabilistic failure model for buried cast iron pipes is described, which is based on the fracture mechanics of the pipe failure process. Such a model is useful in the asset management of buried pipelines. The model is then applied within a Monte-Carlo simulation framework after adding stochasticity to input variables. Historical failure rates are calculated based on a database of 81,595 pipes and their recorded failures, and model parameters are chosen to provide the best fit between historical and predicted failure rates. This provides an estimated corrosion rate distribution, which agrees well with experimental results. The first model design was chosen in a deliberate simplistic fashion in order to allow for further strong exploration of model assumptions. Therefore, first runs of the initial model resulted in a poor quantitative and qualitative fit in regards to failure rates. However, by exploring natural additional assumptions such as relating to stochastic loads, a number of assumptions were chosen which improved the model to a stage where an acceptable fit was achieved. The model bridges the gap between micro- and macro-level, and this is the novelty in the approach. In this model, data can be used both from the macro-level in terms of failure rates, as well as from the micro-level such as in terms of corrosion rates.


Environmental Modelling and Software | 2010

Modelling an urban water system on the edge of chaos

Magnus Moglia; Pascal Perez; Stewart Burn

Viewing an urban water system as a complex adaptive system provides new opportunities for analysis and avoids some critical simplifications. Taking this perspective, it is possible to explore the inter-related effects of changes to the system. This is particularly important in the developing world where donors providing aid aim to improve conditions but struggle to understand and quantify the systemic impacts of their actions. This is because an intervention aiming to improve condition may also have unintended and undesirable effects. To provide decision support, this paper describes an agent-based model of an urban water system, developed on the basis of ethnographic interviews, and subsequently evaluated by local stakeholders. The paper describes the model design as well as the results of scenarios. The model provides guidance on which system amendments may produce the best outcomes in terms of output variables, and on the basis of sense-checking and sensitivity analysis it is judged that model results are likely to give a good indication about possible real world outcomes. It is clear that no single strategy will solve all problems on its own, but that a combined strategy - with a strong focus on groundwater management and protection - is likely to be most successful.


Ecology and Society | 2010

Co-engineering Participatory Water Management Processes: Theory and Insights from Australian and Bulgarian Interventions

Katherine A. Daniell; Ian White; Nils Ferrand; Irina Ribarova; Peter Coad; Jean Emmanuel Rougier; M. Hare; Natalie A. Jones; Albena Popova; Dominique Rollin; Pascal Perez; Stewart Burn

Broad-scale, multi-governance level, participatory water management processes intended to aid collective decision making and learning are rarely initiated, designed, implemented, and managed by one person. These processes mostly emerge from some form of collective planning and organization activities because of the stakes, time, and budgets involved in their implementation. Despite the potential importance of these collective processes for managing complex water-related social-ecological systems, little research focusing on the project teams that design and organize participatory water management processes has ever been undertaken. We have begun to fill this gap by introducing and outlining the concept of a co-engineering process and examining how it impacts the processes and outcomes of participatory water management. We used a hybrid form of intervention research in two broad-scale, multi-governance level, participatory water management processes in Australia and Bulgaria to build insights into these co- engineering processes. We examined how divergent objectives and conflict in the project teams were negotiated, and the impacts of this co-engineering on the participatory water management processes. These investigations showed: (1) that language barriers may aid, rather than hinder, the process of stakeholder appropriation, collective learning and skills transferal related to the design and implementation of participatory water management processes; and (2) that diversity in co-engineering groups, if managed positively through collaborative work and integrative negotiations, can present opportunities and not just challenges for achieving a range of desired outcomes for participatory water management processes. A number of areas for future research on co-engineering participatory water management processes are also highlighted.


Urban Water Journal | 2006

Application of probabilistic neural networks in modelling structural deterioration of stormwater pipes

D. H Tran; A. W. M Ng; B. J. C Perera; Stewart Burn; Paul Davis

In Australia, when stormwater systems were first introduced over 100 years ago, they were constructed independently of the sewer systems, and they are normally the responsibility of the third level of government, i.e., local government or city councils. Because of the increasing age of these stormwater systems and their worsening performance, there are serious concerns in a significant number of city councils regarding their deterioration. A study has been conducted on the structural deterioration of concrete pipes that make up the bulk of the stormwater pipe systems in these councils. In an attempt to look for a reliable deterioration model, a probabilistic neural network (PNN) model was developed using the data set supplied from participating councils. The PNN model was validated with snapshot-based sample data, which makes up the data set. The predictive performance of the PNN model was compared with a traditional parametric model using discriminant analysis on the same data set. Structural deterioration was hypothesised to be influenced by a set of explanatory factors, including pipe design and construction factors—such as pipe size, buried depth—and site factors—such as soil type, moisture index, tree root intrusion, etc. The results show that the PNN model has a better predictive power and uses significantly more input variables (i.e., explanatory factors) than the discriminant model. More importantly, the key factors for prediction in the PNN model are difficult to interpret, suggesting that besides prediction accuracy, model interpretation is an important issue for further investigation.


Water Resources Research | 2014

Quantification of surface energy fluxes from a small water body using scintillometry and eddy covariance

Ryan McGloin; Hamish A. McGowan; David McJannet; F. J. Cook; Andrey Sogachev; Stewart Burn

Accurate quantification of evaporation from small water storages is essential for water management and planning, particularly in water-scarce regions. In order to ascertain suitable methods for direct measurement of evaporation from small water bodies, this study presents a comparison of eddy covariance and scintillometry measurements from a reservoir in southeast Queensland, Australia. The work presented expands on a short study presented by McJannet et al. (2011) to include comparisons of eddy covariance measurements and scintillometer-derived predictions of surface energy fluxes under a wide range of seasonal weather conditions. In this study, analysis was undertaken to ascertain whether important theoretical assumptions required for both techniques are valid in the complex environment of a small reservoir. Statistical comparison, energy balance closure, and the relationship between evaporation measurements and key environmental controls were used to compare the results of the two techniques. Reasonable agreement was shown between the sensible heat flux measurements from eddy covariance and scintillometry, while scintillometer-derived estimates of latent heat flux were approximately 21% greater than eddy covariance measurements. We suggest possible reasons for this difference and provide recommendations for further research for improving measurements of surface energy fluxes over small water bodies using eddy covariance and scintillometry. Key Points Source areas for Eddy covariance and scintillometry were on the water surface Reasonable agreement was shown between the sensible heat flux measurements Scintillometer estimates of latent heat flux were greater than eddy covariance


Water Science and Technology | 2012

Impact of water source management practices in residential areas on sewer networks - a review.

Nyoman Marleni; Stephen Gray; Ashok Sharma; Stewart Burn; Nitin Muttil

Prolonged drought which has occurred everywhere around the world has caused water shortages, leading many countries to consider more sustainable practices, which are called source management practices (SMPs) to ensure water availability for the future. SMPs include the practices of water use reduction, potable water substitution and wastewater volume reduction such as water demand management, rainwater harvesting, greywater recycling and sewer mining. Besides the well known advantages from SMPs, they also contribute to the alteration of wastewater characteristics which finally affect the process in downstream infrastructure such as sewerage networks. Several studies have shown that the implementation of SMPs decreases the wastewater flow, whilst increasing its strength. High-strength wastewater can cause sewer problems such as sewer blockage, odour and corrosion. Yet, not all SMPs and their impact on existing sewer networks have been investigated. Therefore, this study reviews some examples of four common SMPs, the wastewater characteristics and the physical and biochemical transformation processes in sewers and the problems that might caused by them, and finally the potential impacts of those SMPs on wastewater characteristics and sewer networks are discussed. This paper provides sewer system managers with an overview of potential impacts on the sewer network due to the implementation of some SMPs. Potential research opportunities for the impact of SMPs on existing sewers are also identified.


Water Science and Technology | 2010

A pathway to a more sustainable water sector: sustainability-based asset management

David Marlow; David J. Beale; Stewart Burn

The water sectors of many countries are faced with the need to address simultaneously two overarching challenges; the need to undertake effective asset management coupled with the broader need to evolve business processes so as to embrace sustainability principles. Research has thus been undertaken into the role sustainability principles play in asset management. As part of this research, a series of 25 in-depth interviews were undertaken with water sector professionals from around Australia. Drawing on the results of these interviews, this paper outlines the conceptual relationship between asset management and sustainability along with a synthesis of the relevant opinions voiced in the interviews. The interviews indicated that the participating water authorities have made a strong commitment to sustainability, but there is a need to facilitate change processes to embed sustainability principles into business as usual practices. Interviewees also noted that asset management and sustainability are interlinked from a number of perspectives, especially in the way decision making is undertaken with respect to assets and service provision. The interviews also provided insights into the research needed to develop a holistic sustainability-based asset management framework.

Collaboration


Dive into the Stewart Burn's collaboration.

Top Co-Authors

Avatar

Magnus Moglia

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Paul Davis

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Ashok Sharma

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

David McJannet

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Pascal Perez

University of Wollongong

View shared research outputs
Top Co-Authors

Avatar

David Marlow

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. J. Cook

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Ryan McGloin

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

John Mashford

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Researchain Logo
Decentralizing Knowledge