Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stewart C. Loken is active.

Publication


Featured researches published by Stewart C. Loken.


The Astrophysical Journal | 2006

Nearby Supernova Factory Observations of SN 2005gj: Another Type Ia Supernova in a Massive Circumstellar Envelope.

G. Aldering; P. Antilogus; S. Bailey; Charles Baltay; A. Bauer; N. Blanc; S. Bongard; Yannick Copin; E. Gangler; S. Gilles; Richard Kessler; Daniel Kocevski; Ben Lee; Stewart C. Loken; P. Nugent; R. Pain; E. Pecontal; R. Pereira; S. Perlmutter; D. Rabinowitz; G. Rigaudier; Richard Allen Scalzo; G. Smadja; R. C. Thomas; Lifan Wang; Benjamin Alan Weaver

Revision 2.6, 2006/06/01 00:20:07 Nearby Supernova Factory Observations of SN 2005gj: Another Type Ia Supernova in a Massive Circumstellar Envelope. The Nearby Supernova Factory G. Aldering, P. Antilogus, S. Bailey, 1 C. Baltay, 8 A. Bauer, 8 N. Blanc, 2 S. Bongard, 1,5 Y. Copin, 2 E. Gangler, 2 S. Gilles, 3 R. Kessler, 7 D. Kocevski, 1,6 B. C. Lee, 1 S. Loken, 1 P. Nugent, 1 R. Pain, 3 E. P´ contal, 4 R. Pereira, 3 S. Perlmutter, 1,6 D. Rabinowitz, 8 e G. Rigaudier, R. Scalzo, G. Smadja, 2 R. C. Thomas, 1 L. Wang, 1 B. A. Weaver 1,5 ABSTRACT We report the independent discovery and follow-up observations of supernova 2005gj by the Nearby Supernova Factory. This is the second confirmed case of a “hybrid” Type Ia/IIn supernova, which like the prototype SN 2002ic, we inter- pret as the explosion of a white dwarf interacting with a circumstellar medium. Our early-phase photometry of SN 2005gj shows that the strength of the inter- action between the supernova ejecta and circumstellar material is much stronger than for SN 2002ic. Our first spectrum shows a hot continuum with broad and narrow Hα emission. Later spectra, spanning over 4 months from outburst, show clear Type Ia features combined with broad and narrow Hγ, Hβ, Hα and He I λλ5876,7065 in emission. At higher resolution, P Cygni profiles are appar- ent. Surprisingly, we also observe an inverted P Cygni profile for [O III ] λ5007. Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720 Institut de Physique Nucl´ aire de Lyon, UMR5822, CNRS-IN2P3; Universit´ Claude Bernard Lyon 1, e e F-69622 Villeurbanne France Laboratoire de Physique Nucl´ aire et des Hautes Energies IN2P3 - CNRS - Universit´ s Paris VI et Paris e e VII, 4 place Jussieu Tour 33 - Rez de chauss´ e 75252 Paris Cedex 05 e Centre de Recherche Astronomique de Lyon, 9, av. Charles Andr´ , 69561 Saint Genis Laval Cedex e University of California, Space Sciences Laboratory, Berkeley, CA 94720-7450 Department of Physics, University of California, Berkeley, CA 94720 Kavli Institute for Cosmological Physics, The University of Chicago, Chicago, IL 60637 Department of Physics, Yale University, New Haven, CT 06250-8121


Astronomical Telescopes and Instrumentation | 2002

Overview of the Nearby Supernova Factory

G. Aldering; Gilles Adam; P. Antilogus; Pierre Astier; Roland Bacon; Sébastien Bongard; C. Bonnaud; Yannick Copin; D. Hardin; D. Andy Howell; Jean-Pierre Lemmonnier; Joseph Levy; Stewart C. Loken; Peter E. Nugent; R. Pain; Arlette Pecontal; Emmanuel Pecontal; S. Perlmutter; Robert Michael Quimby; Kyan Schahmaneche; Gerard Smadja; W. Michael Wood-Vasey

The Nearby Supernova Factory (Snfactory) is an international experiment designed to lay the foundation for the next generation of cosmology experiments (such as CFHTLS, wP, SNAP and LSST) which will measure the expansion history of the Universe using Type Ia supernovae. The Snfactory will discover and obtain frequent lightcurve spectrophotometry covering 3200-10000Å for roughly 300 Type Ia supernovae at the low-redshift end of the smooth Hubble flow. The quantity, quality, breadth of galactic environments, and homogeneous nature of the Snfactory dataset will make it the premier source of calibration for the Type Ia supernova width-brightness relation and the intrinsic supernova colors used for K-correction and correction for extinction by host-galaxy dust. This dataset will also allow an extensive investigation of additional parameters which possibly influence the quality of Type Ia supernovae as cosmological probes. The Snfactory search capabilities and follow-up instrumentation include wide-field CCD imagers on two 1.2-m telescopes (via collaboration with the Near Earth Asteroid Tracking team at JPL and the QUEST team at Yale), and a two-channel integral-field-unit optical spectrograph/imager being fabricated for the University of Hawaii 2.2-m telescope. In addition to ground-based follow-up, UV spectra for a subsample of these supernovae will be obtained with HST. The pipeline to obtain, transfer via wireless and standard internet, and automatically process the search images is in operation. Software and hardware development is now underway to enable the execution of follow-up spectroscopy of supernova candidates at the Hawaii 2.2-m telescope via automated remote control of the telescope and the IFU spectrograph/imager.


Astronomy and Astrophysics | 2011

The reddening law of type Ia supernovae: separating intrinsic variability from dust using equivalent widths

N. Chotard; E. Gangler; Gregory Scott Aldering; P. Antilogus; Cecilia R. Aragon; S. Bailey; Charles Baltay; S. Bongard; C. Buton; A. Canto; M. Childress; Y. Copin; H. K. Fakhouri; E. Y. Hsiao; M. Kerschhaggl; M. Kowalski; Stewart C. Loken; Peter E. Nugent; K. Paech; R. Pain; E. Pecontal; R. Pereira; S. Perlmutter; D. Rabinowitz; K. Runge; Richard Allen Scalzo; G. Smadja; C. Tao; R. C. Thomas; Benjamin A. Weaver

We employ 76 type Ia supernovae (SNe Ia) with optical spectrophotometry within 2.5 days of B-band maximum light obtained by the Nearby Supernova Factory to derive the impact of Si and Ca features on the supernovae intrinsic luminosity and determine a dust reddening law. We use the equivalent width of Si II λ4131 in place of the light curve stretch to account for first-order intrinsic luminosity variability. The resulting empirical spectral reddening law exhibits strong features that are associated with Ca II and Si II λ6355. After applying a correction based on the Ca II H&K equivalent width we find a reddening law consistent with a Cardelli extinction law. Using the same input data, we compare this result to synthetic rest-frame UBVRI-like photometry to mimic literature observations. After corrections for signatures correlated with Si II λ4131 and Ca II H&K equivalent widths and introducing an empirical correlation between colors, we determine the dust component in each band. We find a value of the total-to-selective extinction ratio, R v = 2.8 ± 0.3. This agrees with the Milky Way value, in contrast to the low R v values found in most previous analyses. This result suggests that the long-standing controversy in interpreting SN Ia colors and their compatibility with a classical extinction law, which is critical to their use as cosmological probes, can be explained by the treatment of the dispersion in colors, and by the variability of features apparent in SN Ia spectra.


The Astrophysical Journal | 2013

HOST GALAXY PROPERTIES AND HUBBLE RESIDUALS OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY

Michael J. Childress; Gregory Scott Aldering; P. Antilogus; Cecilia R. Aragon; S. Bailey; Charles Baltay; S. Bongard; C. Buton; A. Canto; F. Cellier-Holzem; N. Chotard; Y. Copin; H. K. Fakhouri; E. Gangler; J. Guy; E. Y. Hsiao; M. Kerschhaggl; A. G. Kim; M. Kowalski; Stewart C. Loken; P. Nugent; K. Paech; R. Pain; E. Pecontal; R. Pereira; S. Perlmutter; D. Rabinowitz; M. Rigault; K. Runge; Richard Allen Scalzo

We examine the relationship between Type Ia supernova (SN Ia) Hubble residuals and the properties of their host galaxies using a sample of 115 SNe Ia from the Nearby Supernova Factory. We use host galaxy stellar masses and specific star formation rates fitted from photometry for all hosts, as well as gas-phase metallicities for a subset of 69 star-forming (non-active galactic nucleus) hosts, to show that the SN Ia Hubble residuals correlate with each of these host properties. With these data we find new evidence for a correlation between SN Ia intrinsic color and host metallicity. When we combine our data with those of other published SN Ia surveys, we find the difference between mean SN Ia brightnesses in low- and high-mass hosts is 0.077 ? 0.014?mag. When viewed in narrow (0.2?dex) bins of host stellar mass, the data reveal apparent plateaus of Hubble residuals at high and low host masses with a rapid transition over a short mass range (9.8 ? log (M */M ?) ? 10.4). Although metallicity has been a favored interpretation for the origin of the Hubble residual trend with host mass, we illustrate how dust in star-forming galaxies and mean SN Ia progenitor age both evolve along the galaxy mass sequence, thereby presenting equally viable explanations for some or all of the observed SN Ia host bias.


Astronomy and Astrophysics | 2013

Atmospheric extinction properties above Mauna Kea from the Nearby SuperNova Factory spectro-photometric data set

C. Buton; Y. Copin; Gregory Scott Aldering; P. Antilogus; Cecilia R. Aragon; S. Bailey; Charles Baltay; S. Bongard; A. Canto; F. Cellier-Holzem; M. Childress; N. Chotard; H. K. Fakhouri; E. Gangler; J. Guy; E. Y. Hsiao; M. Kerschhaggl; M. Kowalski; Stewart C. Loken; Peter E. Nugent; K. Paech; R. Pain; E. Pecontal; R. Pereira; S. Perlmutter; D. Rabinowitz; M. Rigault; K. Runge; Richard Allen Scalzo; G. Smadja

We present a new atmospheric extinction curve for Mauna Kea spanning 3200--9700 \AA. It is the most comprehensive to date, being based on some 4285 standard star spectra obtained on 478 nights spread over a period of 7 years obtained by the Nearby SuperNova Factory using the SuperNova Integral Field Spectrograph. This mean curve and its dispersion can be used as an aid in calibrating spectroscopic or imaging data from Mauna Kea, and in estimating the calibration uncertainty associated with the use of a mean extinction curve. Our method for decomposing the extinction curve into physical components, and the ability to determine the chromatic portion of the extinction even on cloudy nights, is described and verified over the wide range of conditions sampled by our large dataset. We demonstrate good agreement with atmospheric science data obtain at nearby Mauna Loa Observatory, and with previously published measurements of the extinction above Mauna Kea.


New Astronomy Reviews | 2004

The Nearby Supernova Factory

William Michael Wood-Vasey; Gregory Scott Aldering; Ben Lee; Stewart C. Loken; Peter E. Nugent; S. Perlmutter; J. Siegrist; Lifan Wang; P. Antilogus; P. Astier; D. Hardin; R. Pain; Yannick Copin; Gerard Smadja; E. Gangler; Alain Castera; Gilles Adam; Roland Bacon; J.-P. Lemonnier; Arlette Pecontal; E. Pecontal; Richard Kessler

The Nearby Supernova Factory (SNfactory) is an ambitious project to find and study in detail approximately 300 nearby Type Ia supernovae (SNe Ia) at redshifts 0.03 < z < 0.08. This program will provide an exceptional data set of well-studied SNe in the nearby smooth Hubble flow that can be used as calibration for the current and future programs designed to use SNe to measure the cosmological parameters. The first key ingredient for this program is a reliable supply of Hubble-flow SNe systematically discovered in unprecedented numbers using the same techniques as those used in distant SNe searches. In 2002, 35 SNe were found using our test-bed pipeline for automated SN search and discovery. The pipeline uses images from the asteroid search conducted by the Near Earth Asteroid Tracking group at JPL. Improvements in our subtraction techniques and analysis have allowed us to increase our effective SN discovery rate to {approx}12 SNe/month in 2003.


The Astrophysical Journal | 2013

Host Galaxies of Type Ia Supernovae from the Nearby Supernova Factory

Michael J. Childress; Gregory Scott Aldering; P. Antilogus; Cecilia R. Aragon; S. Bailey; Charles Baltay; S. Bongard; C. Buton; A. Canto; F. Cellier-Holzem; N. Chotard; Y. Copin; H. K. Fakhouri; E. Gangler; J. Guy; E. Y. Hsiao; M. Kerschhaggl; A. G. Kim; M. Kowalski; Stewart C. Loken; P. Nugent; K. Paech; R. Pain; E. Pecontal; R. Pereira; S. Perlmutter; D. Rabinowitz; M. Rigault; K. Runge; Richard Allen Scalzo

We present photometric and spectroscopic observations of galaxies hosting Type Ia supernovae (SNe Ia) observed by the Nearby Supernova Factory. Combining Galaxy Evolution Explorer (GALEX) UV data with optical and near-infrared photometry, we employ stellar population synthesis techniques to measure SN Ia host galaxy stellar masses, star formation rates (SFRs), and reddening due to dust. We reinforce the key role of GALEX UV data in deriving accurate estimates of galaxy SFRs and dust extinction. Optical spectra of SN Ia host galaxies are fitted simultaneously for their stellar continua and emission lines fluxes, from which we derive high-precision redshifts, gas-phase metallicities, and Hα-based SFRs. With these data we show that SN Ia host galaxies present tight agreement with the fiducial galaxy mass-metallicity relation from Sloan Digital Sky Survey (SDSS) for stellar masses log(M */M ☉) > 8.5 where the relation is well defined. The star formation activity of SN Ia host galaxies is consistent with a sample of comparable SDSS field galaxies, though this comparison is limited by systematic uncertainties in SFR measurements. Our analysis indicates that SN Ia host galaxies are, on average, typical representatives of normal field galaxies.


The Astrophysical Journal | 2007

Nearby supernova factory observations of SN 2006D : On sporadic carbon signatures in early type Ia supernova spectra

R. C. Thomas; G. Aldering; P. Antilogus; Cecilia R. Aragon; S. Bailey; Charles Baltay; E. Baron; A. Bauer; C. Buton; S. Bongard; Yannick Copin; E. Gangler; S. Gilles; Richard Kessler; Stewart C. Loken; Peter E. Nugent; R. Pain; Jerod T. Parrent; E. Pecontal; Rodrigo Augusto Santinelo Pereira; S. Perlmutter; D. Rabinowitz; G. Rigaudier; K. Runge; Richard Allen Scalzo; G. Smadja; Lifan Wang; Benjamin Alan Weaver

We present four spectra of the Type Ia supernova SN Ia 2006Dextending from -7 to +13 days with respect to B-band maximum. The spectrainclude the strongest signature of unburned material at photosphericvelocities observed in a SN Ia to date. The earliest spectrum exhibits CII absorption features below 14,000 km/s, including a distinctive C IIlambda 6580 absorption feature. The carbon signatures dissipate as the SNapproaches peak brightness. In addition to discussing implications ofphotospheric-velocity carbon for white dwarf explosion models, we outlinesome factors that may influence the frequency of its detection before andaround peak brightness. Two effects are explored in this regard,including depopulation of the C II optical levels by non-LTE effects, andline-of-sight effects resulting from a clumpy distribution of unburnedmaterial with low volume-filling factor.


The Astrophysical Journal | 2011

KECK OBSERVATIONS OF THE YOUNG METAL-POOR HOST GALAXY OF THE SUPER-CHANDRASEKHAR-MASS TYPE Ia SUPERNOVA SN 2007if

M. Childress; Gregory Scott Aldering; Cecilia R. Aragon; P. Antilogus; S. Bailey; Charles Baltay; S. Bongard; C. Buton; A. Canto; N. Chotard; Y. Copin; H. K. Fakhouri; E. Gangler; M. Kerschhaggl; M. Kowalski; E. Y. Hsiao; Stewart C. Loken; P. Nugent; K. Paech; R. Pain; E. Pecontal; R. Pereira; S. Perlmutter; D. Rabinowitz; K. Runge; Richard Allen Scalzo; R. C. Thomas; G. Smadja; C. Tao; Benjamin A. Weaver

We present Keck LRIS spectroscopy and g-band photometry of the metal-poor, low-luminosity host galaxy of the super-Chandrasekhar-mass Type Ia supernova SN 2007if. Deep imaging of the host reveals its apparent magnitude to be m{sub g} = 23.15 {+-} 0.06, which at the spectroscopically measured redshift of z{sub helio} = 0.07450 {+-} 0.00015 corresponds to an absolute magnitude of M{sub g} = -14.45 {+-} 0.06. Galaxy g - r color constrains the mass-to-light ratio, giving a host stellar mass estimate of log(M{sub *}/M{sub sun}) = 7.32 {+-} 0.17. Balmer absorption in the stellar continuum, along with the strength of the 4000 A break, constrains the age of the dominant starburst in the galaxy to be t{sub burst} = 123{sup +165}{sub -77} Myr, corresponding to a main-sequence turnoff mass of M/M{sub sun} = 4.6{sup +2.6}{sub -1.4}. Using the R{sub 23} method of calculating metallicity from the fluxes of strong emission lines, we determine the host oxygen abundance to be 12 + log(O/H){sub KK04} = 8.01 {+-} 0.09, significantly lower than any previously reported spectroscopically measured Type Ia supernova host galaxy metallicity. Our data show that SN 2007if is very likely to have originated from a young, metal-poor progenitor.


Astronomical Telescopes and Instrumentation | 2003

An integral field spectrograph for SNAP supernova studies

A. Ealet; Eric Prieto; Alain Bonissent; Roger F. Malina; S. Basa; O. Lefevre; A. Mazure; Gregory Tarle; C. Akerlof; G. Aldering; Dante Eric Amidei; Pierre Astier; Andrew Robert Baden; Christopher J. Bebek; Lars Bergström; G. M. Bernstein; C. Bower; M. Campbell; W. Carithers; Eugene D. Commins; D. W. Curtis; Susana Elizabeth Deustua; W.R. Edwards; Richard S. Ellis; Andrew S. Fruchter; Brenda Louise Frye; J.-F. Genat; G. Goldhaber; Ariel Goobar; Jordan Goodman

A well-adapted spectrograph concept has been developed for the SNAP (SuperNova/Acceleration Probe) experiment. The goal is to ensure proper identification of Type Ia supernovae and to standardize the magnitude of each candidate by determining explosion parameters. An instrument based on an integral field method with the powerful concept of imager slicing has been designed and is presented in this paper. The spectrograph concept is optimized to have very high efficiency and low spectral resolution (R {approx} 100), constant through the wavelength range (0.35-1.7{micro}m), adapted to the scientific goals of the mission.

Collaboration


Dive into the Stewart C. Loken's collaboration.

Top Co-Authors

Avatar

Richard Allen Scalzo

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Antilogus

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Gregory Scott Aldering

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Gerard Smadja

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emmanuel Pecontal

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

S. Bailey

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge