Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stewart L. Fisher is active.

Publication


Featured researches published by Stewart L. Fisher.


Journal of Biological Chemistry | 2013

Kinetics of Avibactam Inhibition against Class A, C, and D β-Lactamases

David E. Ehmann; Haris Jahić; Philip L. Ross; Rong-Fang Gu; Jun Hu; Thomas F. Durand-Réville; Sushmita D. Lahiri; Jason Thresher; Stephania Livchak; Ning Gao; Tiffany Palmer; Grant K. Walkup; Stewart L. Fisher

Background: Avibactam is a β-lactamase inhibitor with a broad spectrum of activity. Results: Kinetic parameters of inhibition as well as acyl enzyme stability are reported against six clinically relevant enzymes. Conclusion: Inhibition efficiency is highest against class A, then class C, and then class D. Significance: These base-line inhibition values across enzyme classes provide the foundation for future structural and mechanistic enzymology experiments. Avibactam is a non-β-lactam β-lactamase inhibitor with a spectrum of activity that includes β-lactamase enzymes of classes A, C, and selected D examples. In this work acylation and deacylation rates were measured against the clinically important enzymes CTX-M-15, KPC-2, Enterobacter cloacae AmpC, Pseudomonas aeruginosa AmpC, OXA-10, and OXA-48. The efficiency of acylation (k2/Ki) varied across the enzyme spectrum, from 1.1 × 101 m−1s−1 for OXA-10 to 1.0 × 105 for CTX-M-15. Inhibition of OXA-10 was shown to follow the covalent reversible mechanism, and the acylated OXA-10 displayed the longest residence time for deacylation, with a half-life of greater than 5 days. Across multiple enzymes, acyl enzyme stability was assessed by mass spectrometry. These inhibited enzyme forms were stable to rearrangement or hydrolysis, with the exception of KPC-2. KPC-2 displayed a slow hydrolytic route that involved fragmentation of the acyl-avibactam complex. The identity of released degradation products was investigated, and a possible mechanism for the slow deacylation from KPC-2 is proposed.


Nature | 2007

Exploitation of structural and regulatory diversity in glutamate racemases

Tomas Lundqvist; Stewart L. Fisher; Gunther Kern; Rutger H. A. Folmer; Yafeng Xue; D. Trevor Newton; Thomas A. Keating; Richard A. Alm; Boudewijn L. M. de Jonge

Glutamate racemase is an enzyme essential to the bacterial cell wall biosynthesis pathway, and has therefore been considered as a target for antibacterial drug discovery. We characterized the glutamate racemases of several pathogenic bacteria using structural and biochemical approaches. Here we describe three distinct mechanisms of regulation for the family of glutamate racemases: allosteric activation by metabolic precursors, kinetic regulation through substrate inhibition, and d-glutamate recycling using a d-amino acid transaminase. In a search for selective inhibitors, we identified a series of uncompetitive inhibitors specifically targeting Helicobacter pylori glutamate racemase that bind to a cryptic allosteric site, and used these inhibitors to probe the mechanistic and dynamic features of the enzyme. These structural, kinetic and mutational studies provide insight into the physiological regulation of these essential enzymes and provide a basis for designing narrow-spectrum antimicrobial agents.


Journal of Medicinal Chemistry | 2011

Novel N-linked aminopiperidine inhibitors of bacterial topoisomerase type II: broad-spectrum antibacterial agents with reduced hERG activity.

Folkert Reck; Richard A. Alm; Patrick Brassil; Joseph V. Newman; Boudewijn Dejonge; Charles J. Eyermann; Gloria Anne Breault; John N. Breen; Janelle Comita-Prevoir; Mark T. D. Cronin; Hajnalka Davis; David E. Ehmann; Vincent Galullo; Bolin Geng; Tyler Grebe; Marshall Morningstar; Phil Walker; Barry Hayter; Stewart L. Fisher

Novel non-fluoroquinolone inhibitors of bacterial type II topoisomerases (DNA gyrase and topoisomerase IV) are of interest for the development of new antibacterial agents that are not impacted by target-mediated cross-resistance with fluoroquinolones. Aminopiperidines that have a bicyclic aromatic moiety linked through a carbon to an ethyl bridge, such as 1, generally show potent broad-spectrum antibacterial activity, including quinolone-resistant isolates, but suffer from potent hERG inhibition (IC(50)= 3 μM for 1). We now disclose the finding that new analogues of 1 with an N-linked cyclic amide moiety attached to the ethyl bridge, such as 24m, retain the broad-spectrum antibacterial activity of 1 but show significantly less hERG inhibition (IC(50)= 31 μM for 24m) and higher free fraction than 1. One optimized analogue, compound 24l, showed moderate clearance in the dog and promising efficacy against Staphylococcus aureus in a mouse thigh infection model.


Journal of Medicinal Chemistry | 2012

Novel N-linked aminopiperidine inhibitors of bacterial topoisomerase type II with reduced pK(a): antibacterial agents with an improved safety profile.

Folkert Reck; Richard A. Alm; Patrick Brassil; Joseph V. Newman; Paul Ciaccio; John McNulty; Herbert Barthlow; Kosalaram Goteti; John N. Breen; Janelle Comita-Prevoir; Mark T. D. Cronin; David E. Ehmann; Bolin Geng; Andrew A. Godfrey; Stewart L. Fisher

Novel non-fluoroquinolone inhibitors of bacterial type II topoisomerases (DNA gyrase and topoisomerase IV) are of interest for the development of new antibacterial agents that are not impacted by target-mediated cross-resistance with fluoroquinolones. N-Linked amino piperidines, such as 7a, generally show potent antibacterial activity, including against quinolone-resistant isolates, but suffer from hERG inhibition (IC(50) = 44 μM for 7a) and QT prolongation in vivo. We now disclose the finding that new analogues of 7a with reduced pK(a) due to substitution with an electron-withdrawing substituent in the piperidine moiety, such as R,S-7c, retained the Gram-positive activity of 7a but showed significantly less hERG inhibition (IC(50) = 233 μM for R,S-7c). This compound exhibited moderate clearance in dog, promising efficacy against a MRSA strain in a mouse infection model, and an improved in vivo QT profile as measured in a guinea pig in vivo model. As a result of its promising activity, R,S-7c was advanced into phase I clinical studies.


Nature Chemical Biology | 2015

Translating slow-binding inhibition kinetics into cellular and in vivo effects

Grant K. Walkup; Zhiping You; Philip L. Ross; Eleanor K. H. Allen; Fereidoon Daryaee; Michael R. Hale; John P. O'Donnell; David E. Ehmann; Virna J. A. Schuck; Ed T. Buurman; Allison L Choy; Laurel Hajec; Kerry E. Murphy-Benenato; Valerie Marone; Sara A. Patey; Lena A Grosser; Stephen G. Walker; Peter J. Tonge; Stewart L. Fisher

Many drug candidates fail in clinical trials owing to a lack of efficacy from limited target engagement or an insufficient therapeutic index. Minimizing off-target effects while retaining the desired pharmacodynamic (PD) response can be achieved by reduced exposure for drugs that display kinetic selectivity in which the drug-target complex has a longer half-life than off-target-drug complexes. However, though slow-binding inhibition kinetics are a key feature of many marketed drugs, prospective tools that integrate drug-target residence time into predictions of drug efficacy are lacking, hindering the integration of drug-target kinetics into the drug discovery cascade. Here we describe a mechanistic PD model that includes drug-target kinetic parameters, including the on- and off-rates for the formation and breakdown of the drug-target complex. We demonstrate the utility of this model by using it to predict dose response curves for inhibitors of the LpxC enzyme from Pseudomonas aeruginosa in an animal model of infection.


Bioorganic & Medicinal Chemistry Letters | 2011

Exploring Left-Hand-Side substitutions in the benzoxazinone series of 4-amino-piperidine bacterial type IIa topoisomerase inhibitors

Bolin Geng; Janelle Comita-Prevoir; Charles J. Eyermann; Folkert Reck; Stewart L. Fisher

An SAR survey at the C-6 benzoxazinone position of a novel scaffold which inhibits bacterial type IIa topoisomerase demonstrates that a range of small electron donating groups (EDG) and electron withdrawing groups (EWG) are tolerated for antibacterial activity. Cyano was identified as a preferred substituent that affords good antibacterial potency while minimizing hERG cardiac channel activity.


Nature Chemical Biology | 2017

A small-molecule allosteric inhibitor of Mycobacterium tuberculosis tryptophan synthase.

Samantha Wellington; Partha Nag; Karolina Michalska; Stephen Johnston; Robert Jedrzejczak; Virendar K. Kaushik; Anne E. Clatworthy; Noman Siddiqi; Patrick McCarren; Besnik Bajrami; Natalia Maltseva; Senya Combs; Stewart L. Fisher; Andrzej Joachimiak; Stuart L. Schreiber; Deborah T. Hung

New antibiotics with novel targets are greatly needed. Bacteria have numerous essential functions, but only a small fraction of such processes-primarily those involved in macromolecular synthesis-are inhibited by current drugs. Targeting metabolic enzymes has been the focus of recent interest, but effective inhibitors have been difficult to identify. We describe a synthetic azetidine derivative, BRD4592, that kills Mycobacterium tuberculosis (Mtb) through allosteric inhibition of tryptophan synthase (TrpAB), a previously untargeted, highly allosterically regulated enzyme. BRD4592 binds at the TrpAB α-β-subunit interface and affects multiple steps in the enzymes overall reaction, resulting in inhibition not easily overcome by changes in metabolic environment. We show that TrpAB is required for the survival of Mtb and Mycobacterium marinum in vivo and that this requirement may be independent of an adaptive immune response. This work highlights the effectiveness of allosteric inhibition for targeting proteins that are naturally highly dynamic and that are essential in vivo, despite their apparent dispensability under in vitro conditions, and suggests a framework for the discovery of a next generation of allosteric inhibitors.


PLOS ONE | 2014

Secreted Gaussia princeps luciferase as a reporter of Escherichia coli replication in a mouse tissue cage model of infection.

Mingyu Liu; Christina M. Blinn; Sarah M. McLeod; John Wiseman; Joseph V. Newman; Stewart L. Fisher; Grant K. Walkup

Measurement of bacterial burden in animal infection models is a key component for both bacterial pathogenesis studies and therapeutic agent research. The traditional quantification means for in vivo bacterial burden requires frequent animal sacrifice and enumerating colony forming units (CFU) recovered from infection loci. To address these issues, researchers have developed a variety of luciferase-expressing bacterial reporter strains to enable bacterial detection in living animals. To date, all such luciferase-based bacterial reporters are in cell-associated form. Production of luciferase-secreting recombinant bacteria could provide the advantage of reporting CFU from both infection loci themselves and remote sampling (eg. body fluid and plasma). Toward this end, we have genetically manipulated a pathogenic Escherichia coli (E. coli) strain, ATCC25922, to secrete the marine copepod Gaussia princeps luciferase (Gluc), and assessed the use of Gluc as both an in situ and ex situ reporter for bacterial burden in mouse tissue cage infections. The E. coli expressing Gluc demonstrates in vivo imaging of bacteria in a tissue cage model of infection. Furthermore, secreted Gluc activity and bacterial CFUs recovered from tissue cage fluid (TCF) are correlated along 18 days of infection. Importantly, secreted Gluc can also be detected in plasma samples and serve as an ex situ indicator for the established tissue cage infection, once high bacterial burdens are achieved. We have demonstrated that Gluc from marine eukaryotes can be stably expressed and secreted by pathogenic E. coli in vivo to enable a facile tool for longitudinal evaluation of persistent bacterial infection.


Bioorganic & Medicinal Chemistry Letters | 2015

Novel broad-spectrum inhibitors of bacterial methionine aminopeptidase.

Jonathan A. Rose; Sushmita D. Lahiri; David C. McKinney; Rob Albert; Marshall Morningstar; Adam B. Shapiro; Stewart L. Fisher; Paul R. Fleming

With increasing emergence of multi-drug resistant infections, there is a dire need for new classes of compounds that act through unique mechanisms. In this work, we describe the discovery and optimization of a novel series of inhibitors of bacterial methionine aminopeptidase (MAP). Through a high-throughput screening campaign, one azepinone amide hit was found that resembled the native peptide substrate and possessed moderate biochemical potency against three bacterial isozymes. X-ray crystallography was used in combination with substrate-based design to direct the rational optimization of analogs with sub-micromolar potency. The novel compounds presented here represent potent broad-spectrum biochemical inhibitors of bacterial MAP and have the potential to lead to the development of new medicines to combat serious multi-drug resistant infections.


Bioorganic & Medicinal Chemistry Letters | 2018

Discovery of heterocyclic replacements for the coumarin core of anti-tubercular FadD32 inhibitors

Chao Fang; Katie K. Lee; Raymond Nietupski; Robert H. Bates; Raquel Fernandez-Menendez; Eva Maria Lopez-Roman; Laura Guijarro-Lopez; Yunxing Yin; Zuozhong Peng; James Gomez; Stewart L. Fisher; David Barros-Aguirre; Brian K. Hubbard; Michael H. Serrano-Wu; Deborah T. Hung

Previous work established a coumarin scaffold as a starting point for inhibition of Mycobacterium tuberculosis (Mtb) FadD32 enzymatic activity. After further profiling of the coumarin inhibitor 4 revealed chemical instability, we discovered that a quinoline ring circumvented this instability and had the advantage of offering additional substitution vectors to further optimize. Ensuing SAR studies gave rise to quinoline-2-carboxamides with potent anti-tubercular activity. Further optimization of ADME/PK properties culminated in 21b that exhibited compelling in vivo efficacy in a mouse model of Mtb infection.

Collaboration


Dive into the Stewart L. Fisher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrzej Joachimiak

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karolina Michalska

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Jedrzejczak

Argonne National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge