Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stewart Sale is active.

Publication


Featured researches published by Stewart Sale.


British Journal of Cancer | 2004

Pharmacokinetics in mice and growth-inhibitory properties of the putative cancer chemopreventive agent resveratrol and the synthetic analogue trans 3,4,5,4′-tetramethoxystilbene

Stewart Sale; Richard D. Verschoyle; David J. Boocock; Donald J. L. Jones; N. Wilsher; K. C. Ruparelia; G.A. Potter; Peter B. Farmer; William P. Steward; Andreas J. Gescher

Resveratrol (trans-3,5,4′-trihydroxystilbene) is a naturally occurring polyphenol with cancer chemopreventive properties in preclinical models of carcinogenesis, including those of colorectal cancer. Recently, a variety of analogues of resveratrol have been synthesised and investigated in in vitro assays. One analogue, 3,4,5,4′-tetramethoxystilbene (DMU 212), showed preferential growth-inhibitory and proapoptotic properties in transformed cells, when compared with their untransformed counterparts. As part of a chemoprevention drug development programme, the pharmacokinetic properties of DMU 212 were compared with those of resveratrol in the plasma, liver, kidney, lung, heart, brain and small intestinal and colonic mucosa of mice. DMU 212 or resveratrol (240 mg kg−1) were administered intragastrically, and drug concentrations were measured by HPLC. Metabolites were characterised by cochromatography with authentic reference compounds and were identified by mass spectrometry. The ratios of area of plasma or tissue concentration vs time curves of resveratrol over DMU 212 (AUCres/AUCDMU212) for the plasma, liver, small intestinal and colonic mucosa were 3.5, 5, 0.1 and 0.15, respectively. Thus, resveratrol afforded significantly higher levels than DMU 212 in the plasma and liver, while DMU 212 exhibited superior availability compared to resveratrol in the small intestine and colon. Resveratrol was metabolised to its sulphate or glucuronate conjugates, while DMU 212 underwent metabolic hydroxylation or single and double O-demethylation. DMU 212 and resveratrol inhibited the growth of human-derived colon cancer cells HCA-7 and HT-29 in vitro with IC50 values of between 6 and 26 μM. In the light of the superior levels achieved in the gastrointestinal tract after the administration of DMU 212, when compared to resveratrol, the results provide a good rationale to evaluate DMU 212 as a colorectal cancer chemopreventive agent.


Biochemical Pharmacology | 2003

Relevance of mitogen activated protein kinase (MAPK) and phosphotidylinositol-3-kinase/protein kinase B (PI3K/PKB) pathways to induction of apoptosis by curcumin in breast cells.

Matthew S. Squires; E. Ann Hudson; Lynne M. Howells; Stewart Sale; Catherine E. Houghton; J. Louise Jones; Louise H. Fox; Martin Dickens; Sally A. Prigent; Margaret M. Manson

Following observations that curcumin inhibited proliferation (IC(50)=1-5 microM), invasiveness and progression through S/G2/M phases of the cell cycle in the non-tumourigenic HBL100 and tumourigenic MDA-MB-468 human breast cell lines, it was noted that apoptosis was much more pronounced in the tumour line. Therefore, the ability of curcumin to modulate signalling pathways which might contribute to cell survival was investigated. After pre-treatment of cells for 20 min, curcumin (40 microM) inhibited EGF-stimulated phosphorylation of the EGFR in MDA-MB-468 cells and phosphorylation of extracellular signal regulated kinases (ERKs) 1 and 2, as well as ERK activity and levels of nuclear c-fos in both cell lines. At a lower dose (10 microM), it also inhibited the ability of anisomycin to activate JNK, resulting in decreased c-jun phosphorylation, although it did not inhibit JNK activity directly. In contrast, the activation of p38 mitogen activated protein kinase (MAPK) by anisomycin was not inhibited. Curcumin inhibited basal phosphorylation of Akt/protein kinase B (PKB) in both cell lines, but more consistently and to a greater extent in the MDA-MB-468 cells. The MAPK kinase (MKK) inhibitor U0126 (10 microM), while preventing ERK phosphorylation in MDA-MB-468 cells, did not induce apoptosis. The PI3K inhibitor LY294002 (50 microM) inhibited PKB phosphorylation in both cells lines, but only induced apoptosis in the MDA-MB-468 line. These results suggest that while curcumin has several different molecular targets within the MAPK and PI3K/PKB signalling pathways that could contribute to inhibition of proliferation and induction of apoptosis, inhibition of basal activity of Akt/PKB, but not ERK, may facilitate apoptosis in the tumour cell line.


International Journal of Cancer | 2005

Comparison of the effects of the chemopreventive agent resveratrol and its synthetic analog trans 3,4,5,4'-tetramethoxystilbene (DMU-212) on adenoma development in the Apc(Min+) mouse and cyclooxygenase-2 in human-derived colon cancer cells.

Stewart Sale; Richard G. Tunstall; K. C. Ruparelia; Gerry A. Potter; William P. Steward; Andreas J. Gescher

Naturally occurring molecules with putative cancer chemopreventive properties such as the phytoalexin resveratrol (3,5,4′‐trihydroxystilbene) are lead molecules that guide the design of novel agents with improved pharmacologic properties. The synthetic resveratrol analog 3,4,5,4′‐tetramethoxystilbene (DMU‐212) has been shown to possess stronger antiproliferative properties in human colon cancer cells than resveratrol. We tested the hypothesis that DMU‐212 is also a more potent inhibitor of adenoma development in the ApcMin+ mouse, a model of human intestinal carcinogenesis. ApcMin+ mice received either stilbene derivative with the diet (0.2%), and adenomas were counted after experiments were terminated. Resveratrol and DMU‐212 decreased adenoma load by 27% and 24%, respectively, compared to untreated controls. Cyclooxygenase (COX) enzymes are important mechanistic targets of resveratrol, and we investigated whether DMU‐212 interferes with the expression and activity of COX in human colon cells. Incubation of HCA‐7 cancer cells for 24–96 hr with either stilbene derivative (1–50 μM) decreased prostaglandin E‐2 (PGE‐2) production, but only resveratrol decreased COX‐2 protein expression. In mice, which received either stilbene derivative (0.2%) for 3 weeks with their diet, PGE‐2 levels in the intestinal mucosa were reduced by between 45% and 62% compared to mice on control diet. While resveratrol inhibited enzyme activity in purified COX preparations, DMU‐212 failed to do so. The PGE‐2 decrease seen with DMU‐212 in cells and in vivo is probably mediated via its metabolites. The results suggest that alteration of the resveratrol molecule to generate DMU‐212 does not abrogate its ability to decrease adenoma number in ApcMin+ mice or to interfere with PGE‐2 generation in cells.


Science Translational Medicine | 2013

Sulfate Metabolites Provide an Intracellular Pool for Resveratrol Generation and Induce Autophagy with Senescence

Ketan R. Patel; Catherine Andreadi; Robert G. Britton; Emma Horner-Glister; Ankur Karmokar; Stewart Sale; Victoria A. Brown; Dean E. Brenner; Rajinder Singh; William P. Steward; Andreas J. Gescher; Karen Brown

Biologically active concentrations of resveratrol can be generated intracellularly after uptake of the major human sulfate metabolites by selected cells. Cheers for Resveratrol Sulfates Red wine drinkers rejoiced at the news that their chosen beverage contains the antioxidant resveratrol, a phytochemical that has health benefits and extends longevity in preclinical studies. But resveratrolߣs rapid metabolism appears to limit translation of its health benefits to humans, even if one chugs liters of red wine. Now, Patel et al. show that certain metabolites might contribute to resveratrol’s in vivo activity through metabolic regeneration of the parent compound. The authors first detected and quantitated the sulfate and glucuronide conjugates of resveratrol in plasma and tissue after resveratrol ingestion, over time, by cancer patients and healthy control subjects. A daily dose of 1 g of resveratrol gave rise to plasma concentrations of these metabolites in the micromolar range. A pharmacokinetic analysis of resveratrol-3- and 4′-O-sulfate metabolites in mice revealed that sulfate hydrolysis generated free resveratrol, a reaction also observed in human colorectal cells in culture. The addition of resveratrol-sulfate metabolites to human cancer cells in culture correlated with an increase in autophagy and senescence, effects that were blocked with a sulfatase inhibitor that decreased the amounts of intracellular resveratrol. These findings suggest that resveratrol can enter tissues as a stable sulfate-conjugate. Selected cells then generate the free parent compound, which appears to be the form responsible for biological benefits. The phytochemical resveratrol has been shown to exert numerous health benefits in preclinical studies, but its rapid metabolism and resulting poor bioavailability may limit translation of these effects to humans. Resveratrol metabolites might contribute to in vivo activity through regeneration of the parent compound. We present quantitation of sulfate and glucuronide conjugates of resveratrol in human plasma and tissue after repeated ingestion of resveratrol by volunteers and cancer patients, respectively. Subsequent pharmacokinetic characterization of a mixture of resveratrol-3-O-sulfate and resveratrol-4′-O-sulfate in mice showed that these metabolites are absorbed orally but have low bioavailabilities of ~14 and 3%, respectively. Sulfate hydrolysis in vivo liberated free resveratrol, which accounted for ~2% of the total resveratrol species present in mouse plasma. Monosulfate metabolites were also converted to the parent in human colorectal cells. The extent of cellular uptake was dependent on specific membrane transporters and dictated antiproliferative activity. Sulfate metabolites induced autophagy and senescence in human cancer cells; these effects were abrogated by inclusion of a sulfatase inhibitor, which reduced intracellular resveratrol. Together, our findings suggest that resveratrol is delivered to target tissues in a stable sulfate-conjugated form and that the parent compound is gradually regenerated in selected cells and may give rise to the beneficial effects in vivo. At doses considered to be safe in humans, resveratrol generated via this route may be of greater importance than the unmetabolized form.


Cancer Prevention Research | 2013

Prolonged biologically active colonic tissue levels of curcumin achieved after oral administration--a clinical pilot study including assessment of patient acceptability.

Glen R.B. Irving; Lynne M. Howells; Stewart Sale; Ines Kralj-Hans; Wendy Atkin; Susan K. Clark; Robert G. Britton; Donald J. L. Jones; Edwina Scott; David P. Berry; David Hemingway; Andrew Miller; Karen Brown; Andreas J. Gescher; William P. Steward

Curcumin, the main constituent of turmeric, is suspected to possess cancer chemopreventive properties. Pharmacokinetic and pharmacodynamic parameters have been reported, but few data exist describing whether methodologies are suitably robust for curcuminoid detection in colonic biopsy specimens. Information on the acceptability of prolonged administration of daily curcumin is not available. This is of vital importance to implement chemoprevention strategies. This study aimed to quantify levels of curcuminoids in colorectal mucosa of patients undergoing colorectal endoscopy or surgical resection and to obtain information on the acceptability and compliance with daily curcumin. Curcumin C3 complex (2.35 g) was administered to patients once daily for 14 days before endoscopic biopsy or colonic resection. Safety and tolerance were monitored. Analysis of curcuminoids in plasma, urine, and colonic mucosa was conducted by ultraperformance liquid chromatography (UPLC)-UV with characterization by liquid chromatography/tandem mass spectrometry (LC/MS-MS). Twenty-four of 26 patients commencing curcumin completed the course. Six patients reported mild gastrointestinal adverse events. Curcuminoids were detectable in nine of 24 plasma samples, 24 of 24 urine samples, and in the colonic mucosa of all 23 biopsied participants. Mean tissue levels were 48.4 μg/g (127.8 nmol/g) of parent curcuminoids. The major conjugate, curcumin glucuronide, was detectable in 29 of 35 biopsies. High levels of topical curcumin persisted in the mucosa for up to 40 hours postadministration. Sixteen participants (67%) stated that they would take curcumin long-term should it be of proven benefit. In summary, pharmacologically active levels of curcumin were recovered from colonic mucosa. The regimen used here seems safe, and patients support its use in long-term trials. Cancer Prev Res; 6(2); 119–28. ©2012 AACR.


International Journal of Cancer | 2011

Curcumin ameliorates oxaliplatin-induced chemoresistance in HCT116 colorectal cancer cells in vitro and in vivo†

Lynne M. Howells; Stewart Sale; Sathya Neelature Sriramareddy; Glen R.B. Irving; Donald J. L. Jones; Chris J. Ottley; D. Graham Pearson; Christopher D. Mann; Margaret M. Manson; David P. Berry; Andreas J. Gescher; William P. Steward; Karen Brown

The aims of this study were to determine potency of oxaliplatin in combination with curcumin in oxaliplatin‐resistant cell lines in vitro and to evaluate the efficacy of a novel curcumin formulation (Meriva®) alone and in combination with oxaliplatin in colorectal tumor‐bearing mice, exploring relevant pharmacodynamic markers in vivo. Oxaliplatin‐resistant HCT116 p53wt and p53−/− cell lines were generated, and the effects of oxaliplatin in combination with curcumin on resistance‐ and proliferation‐associated proteins investigated. Eighty nude mice were implanted with HCT116 p53wt colorectal cancer cells before randomization into the following treatment groups: control; Meriva only; oxaliplatin only; Meriva + oxaliplatin. Tumor volume was assessed, as was the expression of Ki‐67, cleaved caspase‐3 and Notch‐1. Curcumin in combination with oxaliplatin was able to decrease proliferative capacity of oxaliplatin‐resistant p53 wildtype and p53−/− cell lines more effectively than oxaliplatin alone. It also decreased markers associated with proliferation. After 21 days of treatment in the xenograft model, the order of efficacy was combination > Meriva > oxaliplatin > control. The decrease in tumor volume when compared to vehicle‐treated animals was 53, 35 and 16%, respectively. Ki‐67 and Notch‐1 immunoreactivity was decreased by the combination when compared to vehicle‐treated animals, with cleaved caspase‐3 rising by 4.4‐fold. Meriva did not adversely affect the DNA‐platinating ability of oxaliplatin. Curcumin enhanced the cytotoxicity of oxaliplatin in models of oxaliplatin resistance in vitro. In vivo, Meriva greatly enhanced oxaliplatin efficacy, without affecting the mode of action of oxaliplatin. Addition of formulated curcumin to oxaliplatin‐based chemotherapy regimens has the potential for clinical benefit.


Cancer Prevention Research | 2009

Flavones as Colorectal Cancer Chemopreventive Agents—Phenol-O-Methylation Enhances Efficacy

Hong Cai; Stewart Sale; Ralf Schmid; Robert G. Britton; Karen Brown; William P. Steward; Andreas J. Gescher

Flavonoids occur ubiquitously in plants, and some possess preclinical cancer chemopreventive activity. Little is known about molecular features that mediate chemopreventive efficacy of flavonoids. Here, three related flavones, apigenin (4′,5,7-trihydroxyflavone), tricin (4′,5,7-trihydroxy-3′,5′-dimethoxyflavone), and 3′,4′,5′,5,7-pentamethoxyflavone (PMF), were compared in terms of their effects on (a) adenoma development in ApcMin mice, a model of human gastrointestinal malignancies; (b) growth of APC10.1 mouse adenoma cells in vitro; and (c) prostaglandin E-2 generation in HCA-7 human-derived colorectal cancer cells in vitro. Life-long consumption of PMF with the diet at 0.2% reduced ApcMin mouse adenoma number and burden by 43% and 61%, respectively, whereas apigenin was inactive. Tricin has previously shown activity in this model. IC50 values for murine adenoma cell growth inhibition by PMF, tricin, and apigenin were 6, 13, and 18 μmol/L, respectively. In ApcMin mice that received flavones (0.2%) for 4 weeks, adenoma cell proliferation as reflected by Ki-67 staining was reduced by PMF and tricin, but not by apigenin. On incubation with HCA-7 cells for 6 hours, PMF reduced prostaglandin E-2 generation with an IC50 of 0.8 μmol/L, a fraction of the respective values reported for tricin or apigenin. In silico PMF docked into the cyclooxygenase active site with greater affinity than tricin or apigenin. The results suggest that the rank order of cancer chemopreventive efficacy in ApcMin mice is PMF > tricin > apigenin, supporting the notion that the presence of O-methyl in the flavone molecular scaffold promotes gastrointestinal cancer chemopreventive efficacy.


Cancer Prevention Research | 2010

Preclinical Colorectal Cancer Chemopreventive Efficacy and p53-Modulating Activity of 3′,4′,5′-Trimethoxyflavonol, a Quercetin Analogue

Lynne M. Howells; Robert G. Britton; Marco Mazzoletti; Peter Greaves; Massimo Broggini; Karen Brown; William P. Steward; Andreas J. Gescher; Stewart Sale

Some naturally occurring flavonols, exemplified by quercetin, seem to possess experimental cancer chemopreventive efficacy. Modulation of p53 is a mechanism thought to contribute to their activity. The hypothesis was tested that a synthetic flavonol, 3′,4′,5′-trimethoxyflavonol (TMFol), can interfere with tumor development and p53 expression in two models of colorectal carcinogenesis, ApcMin mice and human-derived HCT116 adenocarcinoma–bearing nude mice. Mice received TMFol with their diet (0.2%) from weaning to week 16 in the case of ApcMin or from either day 7 before (“TMFol early”) or day 7 after (“TMFol late”) tumor inoculation in HCT116 mice. The ability of TMFol to affect tumor proliferation or apoptosis, as reflected by staining for Ki-67 or cleaved caspase-3, respectively, was studied in HCT116 tumors. TMFol tumor levels were measured by high-performance liquid chromatography. Consumption of TMFol reduced small intestinal adenoma burden in ApcMin mice by 47%, compared with control mice (P < 0.002). The TMFol early regimen approximately halved HCT116 tumor size (P < 0.05), decreased tumor proliferation, and increased apoptosis, whereas the TMFol late regimen had no significant effect when compared with controls. In tumor tissues from mice, in which TMFol reduced tumor development, p53 expression was increased 3-fold in ApcMin and 1.5-fold in HCT116 tumor–bearing mice (P = 0.02). TMFol increased p53 also in cells derived from these tumors. TMFol was detected in HCT116 tumors, but levels did not correlate with tumor burden. TMFol was not mutagenic in the Ames test. The results suggest that chemical modification of the flavonol structure may generate safe and efficacious cancer chemopreventive agents. Cancer Prev Res; 3(8); 929–39. ©2010 AACR.


Journal of Pharmacology and Experimental Therapeutics | 2014

Translating Curcumin to the Clinic for Lung Cancer Prevention: Evaluation of the Preclinical Evidence for Its Utility in Primary, Secondary, and Tertiary Prevention Strategies

Lynne M. Howells; Jagdish Mahale; Stewart Sale; Laura E McVeigh; William P. Steward; Anne Thomas; Karen Brown

Lung cancer is responsible for over one million deaths worldwide each year. Smoking cessation for lung cancer prevention remains key, but it is increasingly acknowledged that prevention strategies also need to focus on high-risk groups, including ex-smokers, and patients who have undergone resection of a primary tumor. Models for chemoprevention of lung cancer often present conflicting results, making rational design of lung cancer chemoprevention trials challenging. There has been much focus on use of dietary bioactive compounds in lung cancer prevention strategies, primarily due to their favorable toxicity profile and long history of use within the human populace. One such compound is curcumin, derived from the spice turmeric. This review summarizes and stratifies preclinical evidence for chemopreventive efficacy of curcumin in models of lung cancer, and adjudges the weight of evidence for use of curcumin in lung cancer chemoprevention strategies.


Molecular Nutrition & Food Research | 2015

Search for novel circulating cancer chemopreventive biomarkers of dietary rice bran intervention in ApcMin mice model of colorectal carcinogenesis, using proteomic and metabolic profiling strategies

Leonie Norris; Aditya Malkar; Emma Horner-Glister; Amirmansoor Hakimi; Leong L. Ng; Andreas J. Gescher; Colin S. Creaser; Stewart Sale; Donald J. L. Jones

SCOPE There is strong epidemiological evidence indicating that consumption by humans of whole-grain foods including rice bran may be associated with a low incidence of cancer, especially in the colorectum. Molecular processes associated with cancer development may be retarded by fiber consumption. Consequently, intervention with dietary fiber might be suitable as a cancer chemoprevention strategy in high-risk populations. Here, we searched for putative molecular mechanism-based efficacy biomarkers of rice fiber consumption in the plasma of mice characterized by a genetic propensity to develop gastrointestinal adenomas. The hypothesis was tested that metabolic and proteomic changes in blood reflect the chemopreventive activity of rice bran. METHODS AND RESULTS Apc(Min) mice received diet supplemented with rice bran at 5, 15, and 30%. Blood and tissue samples were taken. Plasma was subjected to MS-based proteomic and metabolic profiling analyses as well as assessment of hematocrit values. Gastrointestinal tracts were removed and adenomas were counted and their size was measured so that total tumor burden could be calculated. The hypothesis was tested that metabolic and proteomic changes in blood reflect chemopreventive activity. CONCLUSION Rice bran consumption reduced adenoma burden and number in a dose-related fashion when compared to controls. Metabolic profiling data demonstrated strong clustering of the groups indicating that metabolic pathways are perturbed. Proteomic analysis identified adiponectin as a molecule that was significantly altered, which may play a role in tumor suppression.

Collaboration


Dive into the Stewart Sale's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen Brown

University of Leicester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David P. Berry

Leicester General Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge